
ABSTRACT 

Infrastructural owners have to manage and control a huge number of structures that 
are subject to many phenomena that can alter their performance. During their service 
life, infrastructure like bridges are exposed to cycles of dynamic loads, causing potential 
fatigue failure. For the life-cycle assessment aim, most procedures require the use of 
strain data. The acquisition of strain data is not easy, especially in critical positions, and 
the high costs would restrict the wide use of such procedures. This study proposes a 
technique based on the graph theory to obtain strain from acceleration data. As shown in 
neuroscience and biological fields, this type of architecture is able to achieve good out- 
comes not relying on handcrafted design parameters. Besides, their capacity of grasp- 
ing spatio-temporal dependencies turns out to be a key point in the damage detection 
framework. A numerical case study involving a two-span beam has been investigated 
to explore the potentiality of this architecture for acceleration-strain conversion. Here 
the graph nodes represent the sensor locations and the combination of geometric and 
signals aided to create a spatial-temporal GCN architecture. The obtained outcomes are 
promising and make the framework extendable to real case studies. 

 
INTRODUCTION 

In order to control the structural performance of infrastructure like bridges that are 
exposed to dynamic loads and deteriorating materials over time, structural health moni- 
toring (SHM) strategies are crucial [1, 2]. 

The vibration-based SHM techniques that acquire the structural response in terms 
of accelerations are widely used [3]. Changes in the modal parameters stemming from 
the raw signals are frequently connected to the damage detection task. Nevertheless, the 
success of such procedures is jeopardized by several factors like data volume, monitoring 
time, and environmental factors like temperature [4, 5] that hinder the early deterioration 
state detection. As a result, despite significant research efforts in this field, operational 
and environmental factors continue to impose risks to large-scale structural evaluations, 
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and these techniques have proven to be more effective for model updating tasks.
Another research strand aims to control the structural status of bridges by evaluating

the recorded structural response in terms of strain or stress. In addition to fault detec-
tion task [6], the acquisition of such structural properties makes it possible to perform
fatigue evaluation and estimate the structural remaining useful life for the infrastructure.
Such evaluation is of paramount relevance for structures like bridges that, throughout
their service life, are repeatedly subjected to dynamic loads and therefore exposed to the
fatigue phenomenon [7]. The acquisition of strain response is not straightforward due to
the difficult accessibility to critical areas as well as the required high costs and labori-
ousness [8,9]. To overcome the limitations linked to the use of the strains, deep learning
techniques able to link the strain and the acceleration response can be exploited [10].
Recently, Gulgec et al. [11] presented a study on strain signal estimation for fatigue as-
sessment based on accelerometer-measured data leveraging LSTM. Although the latter
is a useful tool for tackling tasks involving sequence prediction, it is not a suitable non-
linear model simulator [12] and is also regarded as a computationally expensive method.

The idea that data can be organized on a graph structure was first introduced in other
fields, such as protein interactions in biology, social networks in recommender system,
traffic prediction, and computer vision. The use of this concept at the structural level is
very promising because, by expressing the structure as a graph, it allows us to provide
the model along with its spatial properties and information regarding the connections
between the elements. Such further information will aid the model’s understanding of
the structural response. Right now, the studies carried out in the civil engineering field
mostly focus their attention on damage classification or static structural response predic-
tion problems. Dang et al. [13] proposed a graph convolutional framework directly using
vibration data for damage classification. The node features contain node coordinates and
time histories of observed accelerations. In this sense, a node’s features are not only a
series of discrete, separate values but also a sequence with an embedded temporal link.
Whalen and Mueller [14] developed a graph-based approach for trusses. The geometry,
supports, and loads are encoded by the graph that predicts the displacement fields from
static loads. Song et al. proposed the use of graph neural networks for elastic structural
analysis [15] in a self-supervised learning scheme.

The present study aims at creating an architecture based on a graph convolution
neural network (GCN) in a supervised learning approach for the purpose of conversion of
acceleration signal to strain at each structural node. Therefore, the regression problem to
be solved should consider the dynamic of the structures. The GCN allows managing both
spatial data and multiple time-series data due to the convolution operation. To validate
the approach, synthetic data have been used and the obtained results are promising.

DATA REPRESENTATION USING GRAPH STRUCTURES

Graph neural networks (GNNs) are recent deep learning techniques improving the
capabilities of traditional neural networks like Convolutional (CNNs) [16] and Recurrent
(RNNs) [17, 18] to handle non-Euclidean input. The main assumption is that the order
of the graph nodes doesn’t have an impact on the prediction of the target. As a result,
the sharing of the GNN parameters across the whole graph is unaffected by the ordering
of the nodes. A graph is typically represented by 1:



G = (V,E) (1)

where V denotes the set of nodes (vertices) and E indicates the set of the edges. In the
structural case, the nodes can symbolize the structural joints, and the edges are the struc-
tural components linking the joints [19]. We also need to define the adjacency matrix
A. In this work, we define the matrix values, Aij , to be 1 if nodes i and j are linked to-
gether and 0 otherwise. The sensor locations are treated as graph nodes in this work.
The vibration data are the nodes’ multidimensional properties and the geometrical lay-
out of the structure inherently yields information on the set of edges E and adjacency
matrix A [13]. The types of edge orientation and the level of prediction aid to define
the graph structure. In terms of edge orientation, graph structures can be either direct
or undirected. The latter have been used in this study. Generally, there are three levels
of prediction tasks on a graph: graph level, nodes level, and edge level. The aim of the
present study is to convert acceleration signals to strain signals at each node. Conse-
quently, the regression problem is addressed at the node level.

In the literature, there are several types of GNN. Graph auto-encoder , graph attention
model, graph generative model, graph recurrent neural network, and graph convolutional
network are some examples. The present study is focused on the last.

Graph convolutional network models are a class of neural network which can make
use of the graph’s structure and convolutionally aggregate node information from the
neighborhoods. They have been successful in several tasks and have a high capacity to
learn the graph representations [20].

The method in which the CNN and the GCN combine vibration signals from multiple
sensors is the main distinction between them. Once CNN’s kernel combines the signals,
there isn’t the possibility to determine which sensor a time series belongs to. On the
other hand, after the GCN operation a new version of the node’s features which only
combines the signals of nodes that are directly linked is obtained. Consequently, one
may distinguish the data from each sensor following a GCN layer.

Figure 1. GCN convolution process.



Figure 1 shows the convolutional operation in GCN. The information stemming from
the neighbors aids in improving the prediction accuracy at the nodes due to the spatial
information given by the close nodes. Furthermore, unlike CNNs which integrate data
based on data organisation, GCNs take advantage of real mechanical interactions. GCNs
are able to take into account that adjacent data may not directly interact mechanically.
The GCN layer tipically computes the representation of the node X l+1 at layer (l+1)
starting from X l, the one at level l. Equation 2 shows such operation.

X l+1 = D̂−1/2ÂD̂−1/2X lW + b (2)

Here, Â = A + I is the self-loops adjacency matrix, D̂ is its degree matrix, I is the
identity matrix, and W is a weight matrix. In this study the graph filter by means of the
degree matrix has not been applied to normalize the input adjacency matrix.

CASE STUDY

To implement and test the graph architecture from the perspective of fatigue assess-
ment, a case study involving a finite element two-span beam subjected to traveling loads
simulating the vehicles loads on a bridge has been used.

Each span length is 7.3 meters and each is divided to 8 equal length elements. The
Finite Element Software SAP2000, which is well known for its reliability and effec-
tiveness, is used to simulate the beam. Figure 2 shows the geometry and the sensor’s
location (blue rectangles). To match a bridge dataset as nearly as feasible, the natural
frequencies, damping, and moving load repetition have all been tuned for the vibration
dataset. The frequencies of the first three modes are 1.9, 3, and 7.5 Hz. Seven nodes for
each span, as highlighted in Figure 2, are used to capture the structural response in terms
of accelerations and strains. The accelerations and strains time series are recorded for 4
minutes of vehicle moving load at a sampling frequency of 0.01 seconds.

After then, noise with an SNR of 15 has been added. By subtracting the average
value and dividing by the standard deviation for each node separately, the signals are
normalized. The signals are subsequently split into 4s, or 400 samples each, with 20-
sample steps.

As a result, for each of the 14 nodes of the graph/sensor locations, a dataset composed
of 1181 signals with 400 data points each has been created.

Figure 2. Two-span simulated beam.



GRAPH NETWORK CONFIGURATION AND TRAINING

The database was handled as a collection of 1181 graphs to make it compatible with
the use of GCN. Each graph represents one time interval in which signals are recorded
for all nodes. Each graph has a feature matrix X ∈ ℜ(n×d) and an adjacency matrix A
∈ ℜ(n×n), where n is the number of nodes and d is the dimension of node features. In
this study, n is equal to 14 and d is equal to 403. The feature vector for each node is
composed of the acceleration signal (400 samples), the node coordinates (x,y), and one
feature that reflects the first mode shape.

Table I shows the detailed configuration of the models and the number of parameters
for each layer. Leaky-ReLU and Linear are the activation functions used for the first and
second Dense layers, respectively.

The dataset has been split considering 70%, 20%, and 10% of the entire dataset for
the training, validation, and testing, respectively. The Adam optimizer and the hyper-
parameters’ values displayed in Table II have been used for the training network. As a
loss function, the Mean Squared Error has been used to be minimized throughout the
optimization process of training.

The network has been implemented in Python with the Spektral library [21].This
latter is based on TensorFlow 2 and the Keras API, and it offers a versatile framework for
GNNs that enables the implementation of sophisticated applications with a manageable
level of complexity.

TABLE I. Model summary.

Layer Type Parameters
GCN 80,800
Normalization 400
Dense 80,800
Dropout 0
Dense 160,400

TABLE II. Hyperparameters configuration.

Hyperparameters Values
Learning rate 0.0001
Epochs 3,000
Patience 500
Batch size 32



RESULTS

Figure 3 displays the values of the loss function over the epochs for the training and
validation dataset. The trend shown by the loss function points out a stable convergence
during the training of the network. Figure 4 shows the prediction of one normalized
signal. As can be seen, the target trend, namely the normalized real signal, is captured
by the model.

Time–response assurance criterion (TRAC) is the metric used to evaluate the ca-
pacity of the model to predict correctly the strain signals. Within its formulation (see
Equation 3) Xt and X̄t are the measured strain signal and the predicted strain signal,
respectively.

TRAC =

[
XT

t X̄t

]2[
XT

t Xt

][
X̄t

T
X̄t

] (3)

Figure 3. Loss function for training and validation dataset.

Figure 4. Normalized signal prediction.



Figure 5. TRAC distribution for the test dataset.

Figure 5 shows the values of the TRAC for the test dataset. The TRAC mode value
on the test dataset is 0.72. Therefore, the results are considered very promising. Further
improvements could be obtained making the network deeper by stacking numerous GCN
layers.

CONCLUDING REMARKS

This study investigated the use of the graph convolutional neural network to convert
acceleration to strain signals for the life-cycle assessment. To validate the approach, a
two-span beam has been used as case study. The framework showed a good accuracy for
the prediction task even using a not deep network and the outcomes are promising for
future developments of the work. Despite more research needs to be carried out before
moving on the real-world applications, the presented approach is suited for generaliza-
tion. It illustrates the potentialities of the graph theory in the structural engineering field
and will be extended to more challenging case study.
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