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ABSTRACT 

The low damage tolerance of aircraft structures leads to an oversizing of their op- 
timum weight as they are designed to withstand impacts on aerodynamic surfaces. 
Through the application of Structural Health Monitoring (SHM) techniques, which al- 
low the characterization of impacts with a reduced number of sensors, further structural 
optimization is possible. This article proposes the use of Artificial Intelligence (AI) 
models for a complete impact characterization performed on an anisotropic Carbon Fi- 
bre Reinforced Plastic (CFRP) plate. The three principal objectives are impact location, 
characterization of the Impactor Object (IO), focusing on splitting the mass and velocity 
at equienergy impacts, and damage detection. The location task consists of the pre- 
diction of the impact coordinates (X-Y), while the energetic characterization of the IO 
predicts its mass, velocity, and energy when the impact occurs. These models are pow- 
ered by low-cost piezoelectric (PZT) sensors, which acquire the acoustic wave generated 
by the impact, which allows the monitoring of large surfaces of complex geometry with 
a reduced number of sensors. These models have been trained with experimental data 
acquired with an Autonomous Impact Machine. This machine has performed more than 
40,000 impacts on a coordinate grid that vary the IO mass, velocity, and impact energy, 
focusing on multiple equal energy combinations of the IO mass and impact velocity. 
Damage detection is performed by comparing the predictions of multiple location and 
characterization models. 

 

 
INTRODUCTION 

Composite materials in the aerospace industry have excellent mechanical properties 
but are vulnerable to low-energy impact damage such as cracks and delaminations [1]. 
The severity of damage depends on the impact energy, mass, and velocity of the object 
[2], leading to the deterioration of mechanical properties [3], and reduced service life due 
to fatigue [4]. Non-Destructive Inspection (NDI) techniques are used to assess damage 
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severity but require prior localization.

Various methods for impact localization in composite structures exist. Most stud-

ies focus on low-curvature exterior structures, such as aerodynamic surfaces, using flat

panels with or without stiffeners. Sensors such as PZT sensors [5] or combinations of

accelerometer-fiber optic sensors [6] are used for impact localization, often employing

time-of-arrival techniques in simple structures.

Impact energy is classified into subcritical, delamination, and fiber fracture levels [7].

Energy estimation helps determine if manual inspection is necessary. The influence of IO

mass and velocity on damage generation has been studied, with models relating energetic

parameters to damage type [8]. Velocity affects energy absorption, resulting in a wider

damage range at higher velocities. It is important to identify the combinations of mass

and velocity that cause the impact [7].

AI algorithms are replacing traditional techniques in Structural Health Monitoring,

particularly in complex composite structures, due to their ability to locate and charac-

terize impacts with reduced errors [9]. However, previous studies focused on simple

structures without stiffeners and used simulations or insufficient experimental data for

training. Convolutional Neural Networks have shown success in impact energy classifi-

cation [10].

This work demonstrates impact location and characterization feasibility using Deep

Learning (DL) models. DL models separate the energy, mass, and velocity parame-

ters of the impacting object. A database of real free fall impacts, generated using an

Autonomous Impactor, provides a large number of experimental samples with accu-

rate labeling with which the models had been trained. Results and conclusions will be

presented on the basis of the analysis of the trained models, and a damage detection

technique will be presented.

SPECIMEN UNDER STUDY, TEST CONFIGURATION AND EXPERIMENTAL
DATA ACQUISITION

The specimen selected is a flat CFRP plate stiffened by a T beam made of unidirec-

tional prepreg with quasi-isotropic stacking. Plate dimensions are 577.3×577.3×2 mm3.

The reference system of the plate has the X axis perpendicular to the stiffener, the Y axis

parallel to it, and the Z axis forming a right trihedron. This sample has eight PZT (7BB-

20-3 PZT) sensors attached to its surface to acquire the acoustic wave generated by the

impact. In Figure 1 the numbering of the sensors is presented.

The boundary conditions applied to the specimen are as follows. The two plate

edges parallel to Y-axis were clamped to two 4040 extruded aluminum profiles and these

profiles were clamped to a structure thus restricting all its degrees of freedom. The other

two sides, the X-axis, were left free.

In order to use a Deep Neural Network (DNN) tool, a large impact data set needs to

be generated. This database shall contain impacts at different coordinates on the plate

with an IO of variable mass and which can be dropped from different heights achieving

different impact velocities, therefore, different energies.

The spatial discretization of the surface consists of a grid of points resulting from

dividing the total length of the surface by the diameter of the tube (43.2 mm) through
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Figure 1. Plate scheme. Figure 2. Autonomous Impact Machine.

which the IO falls, giving a total of 12×14 impact points.

Energy discretization consists of generating a data set with impacts in which the IO

has different masses, impact velocities, and energies. Impacting at different masses is

achieved by adding calibrated steel discs to the IO. The different impact velocities are

obtained by dropping the IO from different heights, as the impacts are made by free

fall. To transform the drop height into impact velocity, the equations for the kinetic and

potential energy have been equated, and the velocity has been cleared. However, an

energy value can be achieved with multiple combinations of mass and velocity, and an

essential task of the model will be to separate these two possible combinations.

The IO mass values start at 75 grams and increase by 10 grams to 175, making a total

of 11 different masses. The lowest height at which impacts were made was 35 mm and

increased by 7.5 mm to 260, for a total of 31 different heights. For each mass, impacts

were made at all coordinates and at all release heights, exceeding 48,500 impacts in total.

Obtaining such a high number of experimental impacts was possible thanks to the

use of an Autonomous Impact Machine (AIM), Figure 2. AIM can perform impacts in a

total volume of 1, 440× 990× 150 mm3. The maximum mass of IO that it can move is

1 kg and the maximum release height is 2 m, reaching an impact energy of 19.62 J. The

AIM performs the impacts by turning off an electromagnet and dropping the IO. At the

same time, it starts the acquisition process and stores the impact, checked, and labeled

in the computer.

Artificial intelligence models cannot be fed data directly from sensors, the acquired

samples need to be processed. Therefore, the acquired impacts have been reduced to a

total length of 2,000 samples per sensor, 16,000 per impact, with a total duration of 16

ms. The normalization has then been applied to all impacts, where the maximum and

minimum values used are shown in Table I.

TABLE I. Normalization values.

Operator PZT [V] X [mm] Y [mm] m [g] v [m/s] E [mJ]
min -12.4 0 0 75 0 40

max 12.4 500 500 175 1 400
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(a) Raw impact.
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(b) Processed impact.

Figure 3. Comparison of an impact before and after it has been processed.

A comparison of an impact before and after trimming and normalizing is shown in

Figure 3.

MODEL ARCHITECTURE AND METRICS DEFINITION

The architecture of the models that define the location and energy characterization

of an impact is the same. A high-level block diagram of the architecture is shown in

Figure 4a. The architecture consists of two distinct stages. The first stage (dark blocks)

is responsible for compressing the acoustic waves collected by the PZTs and generating a

new vector with the compressed information; its mission is to extract the most important

features of the impact. This vector is the input of the second stage (gray blocks) in which

independent regressions of the parameters are performed, returning a vector of 1 × N ,

where N is the number of impact parameters predicted by the model.

The internal structure of the trapezoidal blocks consists of a set of layers that are

stacked by progressively reducing the number of neurons, Figure 4b. The number of

layers in each block and its number of neurons are set by the parameters compFE, outFE,

and comReg. The values used in this work are 200, 150, and 100 respectively.

The two models developed are based on the same architecture described above. Both

models have a total of eight FE blocks as 8 PZTs are used; however, the Locator model

has only two regression blocks (X and Y ) compared to three (m, v and E) for the

Characterizer model.

The preprocessed data set has been divided four times into three groups (training-

40%, validation-20% and test-20% randomly) to perform the k-Cross Validation.

The presented model is a regressor, so it returns a continuous and normalized predic-

tion of each variable. Each predicted variable has an associated error with respect to its

target value,

NEi,j = Ŷ i,j − ŷi,j , (1)

where Ŷ i,j is the normalized j target of the impact i, and the ŷi,j is the prediction of the

model.

The metric used to assess the performance of the models will be the percentage
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Figure 4. Model architecture block diagram.

Normalized Euclidean Error, NEE, calculated as

NEEi =

√√√√ k∑
j=1

NE2
i,j × 100 , (2)

where k is the model’s total number of outputs, i is the current impact, and j corresponds

to a given target. This magnitude gives an idea of the error distance as a combination of

all variables.

LOCATOR AND CHARATERIZER RESULTS

Once the models have been trained, the results of the four distributions for the loca-

tor and characterizer models are presented. The models that have generated the results

shown in this section have been trained with all sensors embedded in the structure.

Figure 5 shows the mean and standard deviation of NEE for each of the random

distributions of the impacts. On the other hand, Figure 6 shows the histogram with the

NEE values of the model that has obtained the best metrics.

DAMAGE DETECTION

To simulate damage to the structure, vacuum sealant was glued to the surface where
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Figure 5. k-Cross Validation results.
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Figure 6. NEE histograms of the best-trained models.

the stiffener is located. Three rounds of impacts were performed with a mass of 75 grams

and at the same heights as previously described, however, in each round the vacuum

sealant was in a different position. A total of 13,299 impacts were acquired with the

damaged structure.

The proposed damage detection technique is based on the confidence in the predic-

tions of trained models with the undamaged structure, the confidence being the proba-

bility value 99% of the NEE CDF curve, NEE99%, shown in Figure 6.

The procedure consists of comparing the distance between two models’ predictions

of the same impact. As there is confidence that the model i will make a prediction with a

NEE of less than NEE99%,i, if the distance between the model i and j exceeds the value

NEE99%,i, the structure is considered damaged. If, on the other hand, the prediction is

at a distance of less than NEE99%,i, the structure is considered to be undamaged.

The results shown below correspond to two combinations of four models. The first

combination has been fed with only one sensor per model, C1, while the second has



TABLE II. NEE99% values for C1 of sen-

sors.

Variable Sensors in model
[0] [3] [4] [7]

m 11.43 11.68 11.77 11.03

v 4.85 5.02 4.95 4.71

E 4.5 4.48 4.51 4.38

mvE 12.09 12.74 12.76 12.05

X 3.97 3.91 4.77 4.76

Y 4.24 3.65 4.34 3.41

XY 4.91 4.93 5.37 5.04

TABLE III. Damage detection results [%]

for the C1 combination.

Variable Dam Und
Dam Und Dam Und

m 94.84 1.2 5.16 98.8

v 92.63 1.46 7.37 98.54

E 78.74 2.53 21.26 97.47

mvE 97.37 1.06 2.63 98.94
X 75.98 8.4 24.02 91.6

Y 71.55 8.58 28.45 91.42

XY 89.5 10.36 10.5 89.64

TABLE IV. NEE99% values for C2 of sen-

sors.

Variable Sensors in model
[0, 4] [4, 7] [7, 3] [3, 0]

m 9.96 9.23 9.37 9.29

v 3.39 3.16 3.19 3.33

E 3.62 3.4 3.42 3.39

mvE 12.27 11.08 11.38 11.18

X 2.45 2.37 2.22 1.78

Y 2.4 1.96 1.81 1.8

XY 2.87 2.73 2.58 2.17

TABLE V. Damage detection results [%]

for the C2 combination.

Variable Dam Und
Dam Und Dam Und

m 91 0.69 9 99.31

v 93.41 1.42 6.59 98.58

E 70.52 1.15 29.48 98.85

mvE 92.92 0.35 7.08 99.65
X 74.14 7.14 25.86 92.86

Y 77.02 6.95 22.98 93.05

XY 93.02 9.19 6.98 90.81

used two, C2. Tables II and IV show the values of NEE99% for each of the variables

predicted by the model, in addition to the overall prediction combination. Tables III and

V show first the results of the classification of impacts on the damaged structure and then

on impacts on the undamaged structure. In this way, the error of predicting the presence

of damage when there is no damage and vice versa can be appreciated.

CONCLUSIONS

The models shown demonstrate that both the location of the position of an impact and

the energetic characterization of the impact are possible by using Artificial Intelligence.

Although the localization model has higher precision than the energy characterizer, the

mean values NEE are equal to or below the unity per cent. In addition, confidence in

the predictions of the model has allowed the generation of a structural health classifier

that detects 99% that there is no damage to a healthy structure and 97% that there is

damage to a damaged structure.
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