When is an SHM Problem a Multi-Task-
Learning Problem?
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ABSTRACT

Multi-task neural networks learn tasks simultaneously to improve individual task
performance. There are three mechanisms of multi-task learning (MTL) which are ex-
ploredjhere for the context of structural health monitoring (SHM): (i) the natural occur-
rence of multiple tasks; (ii) using outputs as inputs (both linked to the recent research
in population-based SHM (PBSHM)); and, (iii) additional loss functions to provide dif-
ferent insights. Each of these problem settings for MTL is detailed and an example is
given.

INTRODUCTION

Structural health monitoring (SHM), is a predictive tool which provides an online
damage detection and condition monitoring strategy using data recorded from an indi-
viduai structure [1]. Data are often unavailable or incomplete, measurements can be
limited [2] and, as a consequence, a data set which would be used to train a model could
be insufficient to provide reliable results. Part of the increased motivation for SHM sys-
tems is from the growing number of structures which are reaching the end of their design
life [1]; if the condition of the structures can be accurately assessed online for damage,
then the structures can continue to operate. A key element to a SHM system is that it is
accurate, as the cost of uninformative predictions is not just economical but could have
safety implications too.

Multi-task learning (MTL) refers to a suite of algorithms which learn tasks simulta-
neously, as opposed to in isolation from each other. MTL can be applied to improve gen-
eralisation of tasks, hence the accuracy of predictions, and therefore it could be applied
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Figure 1. (Left) NN with single task. (Right) NN with multiple tasks.

to improve SHM systems. Caruana [3]], developed one of the first forms of multi-task
learning, a neural network (NN) with back propagation, to train tasks simultaneously
and improve generalisation between tasks. Since the original work, multi-task learners
have been applied to a lot of different machine-learning algorithms, from support vec-
tor machines [4] to decision trees [S|6]. Within this paper, multi-task learning will be
discussed purely in relation to NNs. Improved generalisation may improve accuracy of
predictions across multiple tasks and hence could be beneficial to SHM systems.

The purpose of this paper is to provide a discussion of the applicability of the dif-
ferent types of multi-task learning problem settings with respect to the field of SHM. To
distinguish between whether an NN is multi-task or not, a non-MTL NN will be referred
to as an independent learner and a multi-task NN will be referred to as MTL.

BACKGROUND

It is useful to start with the architecture of a simple NN, as shown in Figure [I] Data
entered via the input layer, where each node represents an individual feature/measurement
that is added to the network. The hidden layer represents a set of latent features which
are constructed from the measured features; there can be multiple hidden layers and
hence multiple sets of latent features. Finally, the output layer generates the final output
from the network.

NN have been applied within the context of SHM in varying applications. Elkordy
et al. [7] is an early example of the use of NNs in the context of SHM for damage
detection. Manson et al. [8] and Mustapha et al. [9]] each use a multi-layer perceptron NN
to classify the location of damage, on an aircraft wing and isotropic plate, respectively.
Since these early examples of the use of NNs in SHM, there has been a plethora of
work utilising NNs, from using auto-associative NN to detect damage before a crack is
visibly seen [[10], to using a convolutional NN to classify wind turbine tower vibration
health states [[11], a systematic review of the use of convolutional NNs in SHM is given
in [12].
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Figure 2. Example of a deep NN with both a shared hidden layer and split hidden layer.

The structure of an MTL NN is an extension of the independent NN, as shown by
Figure |1} Just as with the independent formulations, the MTL NN has an input layer,
hidden layers and an output layer. The main difference between the two networks in
Figure [I]is the additional output nodes in the output layer. The additional output nodes
represent different tasks, i.e. the multi-task nature of the network. The hidden layer could
be more or less unchanged in the MTL setting, or it can take a very different structure.
For a deep NN, the MTL NN may share all of the hidden layers or only several of the
bottom hidden layers (an example of this structure is shown in figure [2). The input layer
may have the same number of input features as with the independent learner; however,
it may also have more input nodes to represent more features being added to the model.

The structure of the NN will be dependent on the mechanism of MTL which is being
implemented. There are three main themes of multi-task learning discussed here which
have been inspired by Caruana’s paper on MTL learning [3]], all which have applicability
within SHM problem settings. Briefly these are:

 Natural occurrence of multiple tasks - additional tasks which make sense to learn
together.

» Using outputs as “inputs” - adding data which cannot be added as an input as an
output so that the data can influence the model. This can be used when the data is
not accessible on the same time scale as the other data inputs.

* Additional loss functions to provide different insights - repeating the output of a
NN but using a different loss function.

The following sections will detail each of the mechanisms and provide insight into
potential problem settings of them.



PROBLEM SETTING 1: NATURAL OCCURRENCE OF MULTIPLE TASKS

Arguably, one of the most intuitive uses of MTL is when there is a set of tasks which
are related and therefore make sense to learn together. Often the definition of MTL
is given in relation to this problem setting, Zhang et al. [13]] provides an overview of
multitask learning, the paper defines the aims of MTL as: fo leverage useful information
contained in multiple learning tasks to help learn a more accurate learner for each task.
For this problem setting of MTL, learning the tasks together provides a synergy that
improves the performance of several tasks compared to if an independent learner was
applied to each task individually. The structure of an MTL for this problem setting is
given in Figure

A example of the natural occurrence of multiple tasks in the context of SHM is
the use of data from several nominally-identical structures to obtain information about
their damage state, e.g. from wind turbines in a wind farm. With multiple structures,
generalisation may be improved such that physical changes may be more likely to be
identified.

Obtaining information from damage states can be expensive; however, if data from
different structures are combined, then damage-state information can be leveraged be-
tween structures and provide increased information about the structures. One methodol-
ogy of obtaining damage states for a structure is to synthesise it. Synthesised structures
could be used within MTL to improve the performance of the actual structures which
feature in the model. Synthesised data has the benefit of being significantly cheaper to
obtain than the cost associated with providing damage to actual structures.

The majority of MTL which has been conducted in the field of SHM takes this form.
In [14], a multi-task Gaussian process regression is used for missing sensor data re-
construction across a dam sensor network. The data are not missing simultaneously;
however, data points were missing from different sensors in the network and by looking
at the data together, the reconstruction performance improved. In [[15], multi-task sparse
Bayesian learning was conducted on two damaged structures with supplementary infor-
mation provided via simulations of the structures. Learning the two structures together,
the damage patterns are more reliably detected. Finally, [16] used an artificial neural net-
work using data from six aluminium plates to predict fatigue crack length and remaining
fatigue life. Although not explicitly called MTL in the paper, the neural network has two
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Figure 3. Problem setting 1: two tasks, A and B, put into one neural network.



output tasks which are learnt jointly.

A recent area of research is into population-based SHM (PBSHM) [2,|1'/-20], which
aims to utilise how data can be transferred and shared between populations of structures
to allow inferences to be shared across the population. An applicable example of a pop-
ulation of structures that may benefit from PBSHM is one of offshore wind farms. There
now exist a lot of wind farms and hence a lot of structures which require SHM from
a safety perspective, a cost perspective but also from an efficiency-of-power-generated
perspective. This problem setting of MTL fits within the remit of PBSHM and could be
explored within this context.

PROBLEM SETTING 2: USING OUTPUTS AS INPUTS

The second problem setting of MTL is using outputs as inputs, at first this may
appear to be somewhat of an oxymoron; however, there are some features which are not
available as inputs to a model, and therefore can only feature as outputs, see the structure
in Figure 4 An output influences a NN during back-propagation, which occurs during
training, by having an impact on the weights within the model. Hence, although added
as an output, the additional task will influence the model and can be viewed as a form of
input. There are several different, but linked, forms that this can take: transfer learning,
non-operational features, and regression for classification. Each of the different forms is
expanded below.

Certain problem settings of MTL may be labelled as transfer learning. Gardner et al.
[21] broadly categorises transfer learning into two categories: training a model with data
from an auxiliary task and fine tuning it with the main task data, and, performing domain
adaptation such that two tasks can share a latent space. The latter category of transfer
learning is applicable to SHM problem settings, with the aim to transfer knowledge
between a source domain and a target domain [22]. Transfer learning does not require
tasks to be learnt simultaneously; however, it is when tasks are learnt simultaneously
that transfer learning is also multi-task learning.

An example of MTL transfer learning is given in [3], in order to predict the medical
risk of a patient, there are several features that can be measured as inputs (e.g. height),
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Figure 4. Problem setting 2: Using additional inputs as an output.




however, there also may be medical test results which would be a useful feature to add
to the model. Medical test results take time to process and may not be available as an
input for all patients. Therefore, the test results can be added as an output to the model
and form an auxiliary task. During training, the test results help to inform the medical
risk. When tested, the target output is the risk and this can be calculated from the input
features which are available. In this example information from the medical test results
has been transferred to inform the medical risk. A potential synonymous example for
SHM is using the results of model analysis as an additional output for a neural network
which is used for system identification.

The examples above are also useful when considering the use of non-operational
features during training. A further problem setting of using outputs as inputs to con-
sider features that are available during training (which is likely offline, such as modal
analysis), in comparison to features which are available during normal operation. The
non-operational features that are available during training can be added as outputs to
a NN which could improve the generalisation of the model and therefore improve the
performance of the model during online utilisation.

The final category for the problem setting of using outputs as inputs is using ad-
ditional regression outputs to inform a classification task. For classification tasks, the
classification is either True or False, and hence, there is a level of quantisation. Whereas
regression tasks are on a sliding scale which can contain a lot more information than
simply: True or False. Hence, there may be additional information in a regression task
that would inform a classification task. It is a method of using a larger continuous space
whilst solving a discrete problem. Additional classification tasks can also be used to
improve the main classification task as the quantisation may be different to the original
task.

There is little research for this problem setting of MTL within the context of SHM.
Aforementioned, there are strong links with transfer learning and there are promising
problem settings of using outputs as inputs within the context of SHM.

PROBLEM SETTING 3: ADDITIONAL LOSS FUNCTIONS TO PROVIDE DIF-

FERENT INSIGHTS
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Figure 5. Problem setting 3: Additional outputs for a NN.




When constructing a NN with a single task, the developer has to choose a loss func-
tion with which to train the network. During training, the weights and biases of the NN
will be tuned to obtain the best performance of the NN, which is determined by minimis-
ing the loss function. Different loss functions may have affinities to different values of
the weights and biases. Hence, the solution of the NN for different loss functions could
provide different solutions and ould provide different insights from the network, even
though the inputs into the network are exactly the same.

This problem setting of MTL duplicates outputs but uses different loss functions for
each. Caruana [23|] demonstrates how the rankprop error metric performs poorly at the
lower end of a continuous spectrum. Following this, an MTL NN with both the rankprop
error metric and sum-of-square errors metric is used to improve the performance of the
main task at the lower end of the spectrum. Adding the additional loss function, in this
case, improved performance at a critical end of a spectrum.

A potential example of how this could be implemented within the field of SHM is
in the context of fatigue testing. There are two parameters which would be of interest
in fatigue testing: the number of cycles and the amplitude of the force experienced. To
gauge the overall time signal, an L2-norm might be chosen; overall, it is anticipated
that this would give a reasonable average response; however, it might not be sensitive
to accurately detect the time when the loading switches from compression to tension.
For this related task, a different regularisation parameter may be used, which focuses
on when the response passes through 0. To understand the maximum load at the peak
tension/compression, an L4-norm could be applied, which is useful at modelling extrem-
ities. As different regularisation may be used for different interpretations of the data, this
is a good example of where MTL could improve the performance jointly over a range of
tasks.

This problem setting could have interesting applications within SHM.

CONCLUDING REMARKS

This paper discusses the different uses of MTL NNs and how then may be applicable
in the field of SHM. MTL with multiple tasks arising naturally is the most explored of
the problem settings, however, to date, there is still limited work using this approach.
Transfer learning has been explored within PBSHM but the intersect of transfer learning
and MTL is yet to be explored with regards to NNs. Arguably the least explored problem
setting of MTL is the use of additional loss functions to provide different insights. As
the cost of error in SHM can be quite high this problem setting could be very beneficial
for improving prediction accuracy in the field. Overall there is a lot of potential for the
use of MTL NNs in SHM, which can be researched.
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