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ABSTRACT 
 

In the context of smart and resilient extraterrestrial habitats, the structural health 
monitoring (SHM) of habitats is crucial and challenging due to the harsh space 
environments. To this end, a novel anomaly detection framework is developed based on 
active sensing and information theory. Active sensing involves the excitation of the 
structure at specific locations and collecting acceleration data using sensors. The 
collected data from different excitation points and sensor locations are analyzed, and the 
extracted information is fused to further enhance anomaly detection. More specifically, 
an unsupervised anomaly detection framework using autoencoders (AEs) has been 
developed. Continuous wavelet transforms (CWTs) of acceleration signals are utilized 
to train AEs. Information fusion strategies are proposed to enhance the robustness of the 
approach to both aleatoric and epistemic uncertainties. Two unsupervised learning 
approaches developed by standard AE and variational autoencoder (VAE) are 
systematically compared. The numerical study based on the ASCE benchmark model 
and the experimental study based on a geodesic dome testbed have been carried out to 
validate the performance of the proposed framework and study its limitations. The 
framework's ability to extract information from multiple sources allows it to identify 
anomalies that might have been missed by traditional detection methods. For instance, 
it is shown that the proposed approach increases anomaly detection accuracy by up to 
39.8% under a relatively small damage scenario compared to state-of-the-art 
approaches. 
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INTRODUCTION 
 

SHM plays an essential role in developing smart extraterrestrial habitats, and it is 
more challenging than the regular civil infrastructures on Earth due to the harsh space 
environments. Therefore, it is an urgent need to develop a damage detection approach 
for space habitats. Specifically, the approach should be able to deal with uncertainties 
due to environmental and operational conditions, as well as non-ideal boundary 
conditions. The developed approach is also applicable to the structures on Earth. 

Supervised learning requires the labeled data under the structure's healthy and 
damaged states [1]. In this regard, how to generate the dataset under different damaged 
states of the structure to train the data-driven approach becomes a critical problem. 
Unsupervised learning addresses this problem since it does not require the labels of the 
data under different structural scenarios, and it only needs the data under the healthy 
state to train the damage detection approach [2]. Among different unsupervised learning 
methods, AE is the most widely adopted one. However, there is no record of developing 
AE for damage detection in extraterrestrial habitats, and the robustness of AEs to 
aleatoric and epistemic uncertainties is not comprehensively considered in the current 
studies. VAE is an unsupervised learning method in a probabilistic manner, which can 
be utilized for anomaly detection. But there is still a lack of a systematic comparison 
between the damage detection performance of AE and VAE. 

In this work, an unsupervised damage detection approach for extraterrestrial habitats 
is developed using AEs, active sensing, and information fusion. A numerical study 
based on an ASCE benchmark problem is carried out using a 120-degree-of-freedom 
(120-DOF) model. Two unsupervised learning approaches developed by standard AE 
and VAE are systematically compared. To enhance the robustness of the approach to 
aleatoric and epistemic uncertainties, three information fusion strategies are proposed. 
Furthermore, the proposed approach is experimentally validated using a geodesic dome 
that is designed to emulate an extraterrestrial habitat under real-world uncertainties. 

 
 

METHODOLOGY 
 

AE is an unsupervised neural network model that is used for data compression, 
dimensionality reduction, and feature extraction. The architecture of AE consists of two 
parts, an encoder and a decoder, as shown in Figure 1(a). The encoder extracts the 
features representing the most important information in the input data, and the decoder 
reconstructs the input data using the latent representation generated by the encoder. AE 
is trained only using the data under the healthy state of the structure. Consequently, the 
reconstruction error, i.e., mean squared error (MSE), is small under the healthy state. 
However, since AE does not learn the data under the damaged state during the training, 
MSE will be increased if the data under the damaged state is poured into AE. The 
threshold τ for anomaly detection is determined by specifying a percentile of the 
distribution fitted to the MSE of the training data under the healthy state. If MSE is 
larger than this threshold, it can be inferred that the structure is probably changed from 
its healthy state. VAE is a probabilistic generative model that can perform efficient 
approximate inference with continuous latent variables. The architecture of VAE 
contains a probabilistic encoder defined by the guide 𝑞𝑞𝜙𝜙(𝑧𝑧|𝑥𝑥) and a probabilistic 
decoder defined by the likelihood 𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧), as shown in Figure 1(b). In the detection  



  

(a) Standard autoencoder. (b) Variational autoencoder. 
 

Figure 1. Schematic representation of autoencoders. 
 
 

phase, similar to standard AE, if the reconstruction error of VAE quantified by MSE is 
larger than the specified threshold 𝜏𝜏, it can be inferred that the structure is probably 
damaged. The CWT is good at capturing the time-frequency information of signals, 
which provides advantages for the analysis of nonstationary signals. Therefore, the 
CWT of acceleration responses is utilized to train AEs. 

Information fusion refers to the process of integrating information from multiple 
resources to enhance the robustness of the damage detection approach to real-world 
uncertainties. In this work, hierarchical decision fusion is developed, including three 
decision-level fusion strategies: ‘sensor fusion’, ‘sequential sensor and hit fusion’, as 
well as ‘combined sensor and hit fusion’. Suppose M accelerometers are attached to the 
structure, and the structure is hit N times by the hammer. In ‘sensor fusion’, structure 
damage is detected if over m out of M sensors predict the structure is damaged. In 
‘sequential sensor and hit fusion’, based on the results from ‘sensor fusion’, structure 
damage is detected if over n out of N hits predict the structure is damaged. In ‘combined 
sensor and hit fusion’, structure damage is detected if over k out of M × N samples 
predict the structure is damaged. 
 
 
NUMERICAL STUDY: ASCE BENCHMARK MODEL 

 
The benchmark structure, as shown in Figure 2(a), is a four-story, two-bay by two-

bay quarter-scale steel frame constructed at the University of British Columbia. A 120-
DOF model is built to simulate the response measurement of the real structure [3]. The 
sensor and hit locations are shown in Figure 2(b). Structural damage is emulated by  

 
 

  
(a) Real structure (b) 120-DOF model 

 
Figure 2. ASCE benchmark model. 

 
 

 



removing the braces or reducing the stiffness of a specified brace. In this study, seven 
damaged scenarios (DSs) are utilized, as shown in Figure 3. DS-4 to DS-7 refers to 
100%, 75%, 50%, and 25% stiffness reduction of one brace. To simulate the real-world 
uncertainties, 5% aleatoric uncertainty and 10% epistemic uncertainty are added to the 
data. The dataset information is summarized in Table I. 

The damage detection performance of standard AE and VAE with the optimal 
architectures shown in Table II are comprehensively evaluated under all structural 
scenarios. The threshold 𝜏𝜏 for anomaly detection is determined based on the 95th 
percentile of MSE distribution. The parameters 𝑚𝑚, 𝑛𝑛, and 𝑘𝑘 in the information fusion 
strategies are selected as 8 out of 16, 2 out of 4, and 32 out of 64, respectively, which 
enables the information fusion process to be equivalent to the majority vote. The 
damage detection accuracy is shown in Figure 4. It can be observed that under larger 
damaged scenarios (i.e., DS-1 and DS-2), both standard AE and VAE can achieve 
almost 100% accuracy without information fusion. However, as the damage severity 
decreases, the accuracy will be decreased. Standard AE performs better than VAE in 
smaller damaged scenarios (i.e., DS-4 to DS-6), where the aleatoric and epistemic 
uncertainties will pose challenges for damage detection. But information fusion 
strategies can effectively enhance the robustness of the approach to those uncertainties. 
For instance, the accuracy of standard AE under DS-6 can be increased from 60.19% to 
100% by leveraging information fusion. However, if the damage is too small (i.e., DS-
7), both standard AE and VAE cannot make accurate predictions even with information 
fusion strategies. This is because the effect of uncertainties on the change of vibration 
signatures is much larger than the effect of structural damage, which makes the 
approach fail. 

 
 

    
(a) DS-1 (b) DS-2 (c) DS-3 (d) DS-4 to DS-7 

 
Figure 3. Damaged scenarios in the ASCE benchmark model. The unit for the x, y, and z axes is in 

meters. 
 
 

TABLE I. ASCE DATASET INFORMATION 
 

Structural scenario Dataset Number of samples 
HS Training, testing 4000, 1600 

DS-1 to DS-7 Testing 1600 for each DS 
HS: healthy scenario, DS: damaged scenario 
 
 
 

 
 



TABLE II. ARCHITECTURES OF AE AND VAE IN NUMERICAL STUDY. 
 

AE Model Encoder Trainable 
parameters 

Training 
time (min) 

Inference time 
per sample (sec) 

Standard AE 9152 − 64 − 32 − 16 1,185,936 14.3 3.0 × 10−4 
VAE 9152 − 1024 − 3 18,763,718 10.2 1.5 × 10−2 

 
 

  
(a) Accuracy of standard AE (b) Accuracy of VAE 

 
Figure 4. Damage detection of ASCE benchmark model. The legend ‘sensor → hit fusion’ means 

‘sequential sensor and hit fusion’. The legend ‘sensor & hit fusion’ means ‘combined sensor and hit 
fusion’. 

 
 
EXPERIMENTAL VALIDATION: GEODESIC DOME TESTBED 

 
        An extraterrestrial habitat can be built as a dome-shaped structure. A geodesic 
dome is constructed at Purdue University. The diameter and height of the dome are 2.5 
m and 1.5 m, respectively. Structural damage is introduced by removing one strut or 
loosening bolts. Three damaged scenarios are generated at three different locations by  
 
 

  
(a) Intact structure 

 
(b) DS-B17 

 

  
(c) DS-A20 (d) DS-C70 or DS-H46&55 

 
Figure 5. Sensor and damage locations. The yellow dots denote the sensor locations, and the red ellipses 

denote the damageable struts. 
 



TABLE III. ARCHITECTURES OF AE AND VAE IN EXPERIMENTAL STUDY. 
 

AE model Encoder Trainable 
parameters 

Training time 
(min) 

Inference time 
per sample (sec) 

Standard AE 7198-784 11,294,446 3.2 1.4 × 10−4 
VAE 7198-1024-3 14,759,972 11.5 3.7 × 10−3 

 
 

  
(a) Accuracy of standard AE (b) Accuracy of VAE 

 
Figure 6. Damage detection of the geodesic dome. The legend ‘sensor → hit fusion’ means ‘sequential 

sensor and hit fusion’. The legend ‘sensor & hit fusion’ means ‘combined sensor and hit fusion’. 
 

 
removing strut B17, A20, and C70, respectively. A smaller damaged scenario is created 
by loosening the bolts at two ends of strut C70 (i.e., H46 and H55). The sensor and 
damage locations are shown in Figure 5. The proposed approach is experimentally 
validated using the geodesic dome testbed. 

The architectures of standard AE and VAE used in the experimental study are 
summarized in Table III. The damage detection accuracy is shown in Figure 6. Before 
applying information fusion, the accuracy is not good due to the large uncertainties in 
the testbed. However, after employing information fusion strategies, the performance 
can be enhanced significantly. It is shown that the damaged scenario DS-H46&55 by 
loosening two bolts is so small that both standard AE and VAE cannot detect it correctly 
even with information fusion. Overall, standard AE provides higher accuracy than VAE 
either with or without information fusion. 
 
 
CONCLUSION 
 

An unsupervised damage detection framework for extraterrestrial habitats using 
AEs and information theory is developed in this study. Both numerical and experimental 
studies have validated the effectiveness of the proposed framework. It has been shown 
that standard AE outperforms VAE in terms of the higher detection accuracy achieved 
by a simpler network with a smaller number of trainable parameters, as well as faster 
training and inference time. The framework's ability to extract information from 
multiple sources allows it to identify anomalies that might have been missed by 
traditional detection methods. For instance, it is shown that the proposed approach 
increases anomaly detection accuracy by up to 39.8% under a relatively small damage 
scenario compared to state-of-the-art approaches. 
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