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ABSTRACT

In the wind energy sector, the use of segmented rotor blades poses challenges for
Structural Health Monitoring (SHM) systems due to the increasing high loads that can
damage bolted joints. This paper investigates the potential of data fusion to improve
the reliability of SHM systems for bolt connections in segmented rotor blades. Three
CFRP structures with bolted joints are examined and monitored using both piezoelec-
tric and electrical strain gauge sensors. A passive low-frequency monitoring system
is built using strain measurements and neural networks to model the relations between
measurement data. An additional active high-frequency monitoring system is designed
using piezoelectric sensors and guided waves in combination with a subsequent prin-
cipal components analysis. The results show that the data fusion system successfully
detected the damages with an accurate damage occurrence probability prediction even if
one monitoring system provided unreliable predictions. By combining two independent
monitoring systems that complementarily cover different frequency bands, the data fu-
sion system improved the reliability of the monitoring task and reduced the occurrence
of false positive alarms. The approach presented in this study can also be applied to other
monitoring systems in various industries, further expanding the impact of the research.

INTRODUCTION

Data fusion is a powerful approach that integrates different data types to gain deeper
insights from combined data sets, rather than analyzing them in isolation [1]. In struc-
tural health monitoring (SHM), data fusion is used to improve decision-making in eval-
uating structural health. It reduces uncertainty by augmenting information completeness
through synergistic integration of diverse data sources. Data fusion can occur at differ-
ent levels: data-level, feature-level, and decision-level [2]. Previous studies have applied
data fusion in SHM using various sensor systems, such as piezoelectric transducers, op-
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tical fibers, acoustic emission, and digital image correlation [3—6].

In this study, data integration is used to enhance damage detection certainty in joint
bolted connections of segmented rotor blades. Composite rotor blades with bolt connec-
tions are prone to various types of damage, which can reduce the economic efficiency
of wind turbines. To obtain complementary information, strain gauge sensors monitor
low-frequency variations, while piezoelectric sensors monitor high-frequency variations,
covering different frequency ranges. Strain measurements are effective in providing a lo-
cal assessment and suitable for detecting fatigue cracks and delamination. However, they
may not be optimal for detecting internal or small-scale damages and can be sensitive to
environmental, electrical, and mechanical factors, leading to false positive alarms. On
the other hand, guided waves are more sensitive to different types of damages, including
hidden ones, and can cover a large monitoring area, complementing the limitations of
strain measurements and reducing false positive alarms. Decision-level fusion is applied
by linearly combining the indices obtained from both monitoring systems, considering
their heterogeneity. This integrated approach enhances the robustness of the monitoring
system for rotor blades and reduces maintenance requirements during operation.

THEORETICAL BACKGROUND
Damage detection using Neural Networks

Neural Networks (NNs) are models in machine learning that can be used to model
relations between the data points of two or more time series. They consist of intercon-
nected neurons organized in layers and can be trained on labeled data to learn patterns.
The relations between two time series, denoted as S; and .S;, can be modeled using a
NN by determining a function f such as 5,(t) = f(s;(t)), where 5;(t) is the predicted
value of s;(t) using s;(¢) and f is determined using a NN trained on measurements from
the intact structure. Changes in the relations between n sensor pairs can be detected by
monitoring the prediction error, calculated as

»=—Z|s, ) — si(t)] (1)

which can serve as a damage indicator.
Damage detection using Q-Index

Principal Component Analysis (PCA) is a statistical approach used for reducing the
dimensionality of multivariate data while preservinginformation [5]. It involves trans-
forming a normalized input matrix X (n X 0) into a reduced matrix 1" (n X l) using the
loading matrix P (I x [), which contains [ orthogonal vectors called principal compo-
nents. The reduced input space T can be obtained by multiplying X with Pas T = X P,
where [ represents the desired reduced dimensionality. The loading matrix P can be ob-
tained from the eigenvectors of the covariance matrix > of X, where X is calculated as
Y = %X TX = PEPT, with P being the complete eigenvector matrix and £ being a
diagonal matrix with eigenvalues as diagonal elements.
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Figure 1: Experimental setup for the static coupon tests.

The reconstructed data X can be obtained from 7" and P as X = TPT. Changes in
the data properties lead to changes in the principal components and thus to an increased
reconstruction error. The ()-index is a measure of the residual or difference between the
original sample and its reproduction from the reduced space. It can be calculated as

where ¢; = (z; — 91;1-1515T) is the residual vector, I the identity matrix, and P the loading

matrix calculated by using measurements from the intact structure. Careful consideration
of [ is important to ensure minimal information loss and avoid noise effects [5].

Fusion of damage indices

The first step in predicting the state of the structure is to map the damage indices
(Q) and ¢) to a probability between 0 and 1, where 0 indicating intact and 1 indicating
damaged. This is done by defining the probability F; for each monitoring system by:

0 ifez<a
Pi(z) =42 ifa<z<b 3)
1 ifx >0

Here, a and b represent the maximum and minimum values, respectively, that the dam-
age index can have when the structure is known to be intact or damaged. The values of
a and b are extracted from one coupon and than tested on the other two coupons.

A final damage probability is that obtained Prysion = /Po(Q)P:(€). The fusion of prob-
abilities by product mean amplifies the impact of low values in the predictors, making it
useful to handle rare or extreme events and avoid false positives.

EXPERIMENTAL SETUP

In this study, three carbon fiber-reinforced polymer (CFRP) bearing test specimens
measuring 260 mm x 160 mm x 10 mm with 39 mm bolted joints were examined. The
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Figure 2: Mechanical properties of the coupons.

test specimens were each instrumented with 5 strain gauges (SGs) and 4 piezoelectric
sensors (PZTs) as shown in Figure 1a. The mechanical load was introduced using a
bearing fixture and a servohydraulic testing machine with a load capacity of 1000 kN
(Figure 1b). The load profile is defined by a sequence of ramps with holding stages,
where the load increases from 0 to 120 kN. The load is ramped up in steps of 20 kN and
each ramp is held at its maximum for a duration of 140, 120, and 80 seconds, respec-
tively, for the three plates. Subsequently, the load is increased linearly for all coupons
until the point of failure load is reached. All sensors are mounted around the bolted con-
nection, where the highest stresses are expected and potential damage may occur. SG
1, positioned relatively far from the stress region, serves as a reference sensor, and its
relation with the other sensors is used as a damage indicator. SGs signals are recorded
continuously during the test at a sampling rate of 10 Hz. PZT 1 serves as an actuator. As
excitation signal, a 50 kHz 5-cycle Hann-filtered sine wave is used, measured in a round-
robin fashion with a sample rate of 10 MHz. The ultrasonic based monitoring system is
activated eleven times with each coupon in different conditions. Damage occurs when
the applied static stress exceeds the linear elastic limit, causing irreversible deformation
due to progressive damage. The failure statistics for the static tests of three coupons are
summarized in table (b) in Figure 2.

RESULTS

The condition of the coupon is classified into three states: healthy, uncertain, and
damaged, as defined in Eq. 3 and the accompanying Figure. The healthy state refers
to the bolt connection being fully functional, with no limitations. The uncertain state
is characterized by the bolt connection still being intact, but there is a growing risk of
damage occurring as the applied stress increases. The damaged state is reached when
the bolt connection can no longer perform its function due to irreversible deformations.
Measurement data of the intact condition with a maximum load of 60 kN are used as
training data for both monitoring systems. The borders of each damage index (a and
b) are determined for the first coupon, and then tested on the other two coupons. The
results of the damage detection on the first coupon are shown in Figure 3.

The () index is initially small as the first measurements are used to determine principal
components. However, as the load increases, the damage index also increases. When
damage occurs, the () index reaches higher values, facilitating the identification of the
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Figure 3: Monitoring results of the first coupon.
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Figure 4: Damage detection on the first coupon (load ramp every 140 s) by fusion the
output of the monitoring systems.

aq and by borders. Similarly, the € index exhibits low values initially and a peak at
the time of damage. Nonetheless, the latter is very sensitive to changes of the internal
stress, leading to sudden spikes that could trigger false positive alarms. Based on the
initial evaluations, the determined thresholds are agp = 150, by = 990, a. = 25, and
b = 460. The results for a fused index according to Eq. 3 are depicted in Figure 4. The
resulting damage probability categorizes into three distinct states: intact state with a low
probability of damage (=~ 0%), damaged state with a high probability of damage (over
99%), and uncertain state with intermediate values. Higher values for Pyo, correspond
to higher damage occurrence probabilities. By merging the predictions of both moni-
toring systems, the output is adjusted based on the confidence set of the other system
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Figure 5: Damage detection on second coupon (load ramp every 120 s) by fusion the
output of the monitoring systems.

(the system with low damage probability). For instance, when ¢ indicates damage (with
a value exceeding the preset threshold and a damage probability of 100% as observed
in measurement no. 1) and 3) while () indicates a normal state (damage probability
close to 0%), the damage occurrence probability is Piysion = 0%. The overall likelihood
only increases when both indices predict non-zero damage probabilities. This enhances
the stability of the probability against sudden spikes from the strain-based monitoring
system, thus providing a more reliable monitoring of damage progression. Moreover,
an overall likelihood of 100% is obtained only when both systems agree on the pres-
ence of damage. The threshold values a and b are tested on the remaining plates, and
the results of the damage detection are presented in Figures 5 and 6. The changes
in the load bearing behavior were found to be inadequately addressed by the selected
thresholds for the low-frequency monitoring system, namely a. and b.. This can be at-
tributed to the high sensitivity of the damage index e to the internal stress and the local
sensor placement, which limits the reliability of the defined thresholds. While e reflects
the changes in the internal stress and exhibits a similar trend to the probability of dam-
age occurrence, determining universal thresholds for distinguishing between the various
states of all analyzed plates presents a daunting challenge. For instance, the strain-based
monitoring system indicates damage presence when bearing stress increases to 154 MPa
in the second coupon (failure pressure: 520.2 MPa), and 337 MPa in the third coupon
(failure pressure: 514.2 MPa). Although adjusting the threshold values may mitigate
the issue, determining the appropriate threshold values in advance remains challeng-
ing due to tiny differences in sensor placement leading to different measurement values
with similar trends and, consequently, different thresholds. Furthermore, SG 5 exhibits



4000 o == Damage occurrence

3500 4 ~° Threshold

3000 A
2500 A
“ 2000 -

1500 A

1000 A \

500 - jIH'IJ e J

0 2000 4000 6000 8000
Time (fs =10Hz)

Measurement no. O O O O O O O O O O O

100% 100%

i

usion -

o o o o o o 13%
0% 0% 0% 0% 0% 0% an

Figure 6: Damage detection on third coupon (load ramp every 80 s) by fusion the output
of the monitoring systems.

higher dependency on the actual stress than other sensors, as it is directly connected to
the joint in the load direction, increasing its contribution to e. To reduce the impact of
stress changes on the damage index, examining the relationships between the sensors
separately is a possible solution.

The appropriateness of the chosen threshold for the ultrasonic-based monitoring sys-
tem was confirmed for the second and third coupons. The high-variance features in
the high-frequency domain were extracted by the PCs, which remained unaffected by
load changes. Additionally, the placement of PZTs around the joint connection and the
removal of PCs with minor variance made the monitoring system responsive to global
changes in the plate and less sensitive to minor variations in sensor placement. Conse-
quently, the () index exhibited a similar variation range across all coupons, rendering
the active monitoring system more reliable in this study. It is, therefore, possible to
rely exclusively on this monitoring system to detect damage and activate it permanently.
However, while the () index effectively detected damage, it did not show a clear correla-
tion with the trend of the damage occurrence likelihood, making it challenging to track
damage occurrence probability before the damage occurred. It should be noted that in-
sufficient measurements were taken before the damage to better estimate this point.

The effectiveness of the combined monitoring systems has been demonstrated in accu-
rately and reliably predicting the coupon’s state. The ultrasonic-based system was found
to be more reliable in detecting damage due to its insensitivity to load changes, and the
strain-based system was found to have a similar trend to the load exerted. The advan-
tages of both systems were fused to correct any inaccuracies in damage detection and
provide trustworthy predictions about the probability of damage occurrence. False nega-



tives did not occur in this study since both systems could detect damage effectively. The
system fusion was particularly successful in mitigating false positive alarms, primarily
caused by the strain-based monitoring system, thus improving the overall accuracy of
the damage detection process and the monitoring of the joint connection’s state.

CONCLUSION AND OUTLOOK

In this study, the effectiveness of data fusion on the decision level was performed to
enhance the reliability of SHM systems for joint connections in segmented rotor blades.
The combination of two independent monitoring systems, a low-frequency passive sys-
tem and a high-frequency active system, was proved to be successful in detecting dam-
ages at an early stage and reducing false positive alarms, as well as providing a reliable
monitor of the damage occurrence probability. Future work should focus on validating
the merged system under dynamic loads and applied to multiple joint connections, as
well as exploring alternative fusion strategies and damage detection methods.
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