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ABSTRACT 
 

In Japan, the deterioration of civil structures constructed during the period of strong 
economic growth combined with the shortage of engineers has become a serious social 
problem. One solution to address this issue is to improve the efficiency of structural 
maintenance and management using sensors. The application of machine learning 
method is expected to advance such efforts. This research attempts the damage 
detection of civil structures using an autoencoder, which is a type of unsupervised 
machine learning. The study revealed that there is a relation between the magnitude of 
reconstruction error and the degree of damage to the structure. 

 

INTRODUCTION 

In Japan, the deterioration of civil structures constructed during the period of strong 
economic growth (mainly since the 1960s) combined with the shortage of engineers has 
become a serious social problem. Improving the efficiency of maintenance and 
management using sensors is one solution to address this issue. The application of 
machine learning methods to data analysis is expected to advance such efforts. The 
present research attempts damage detection of civil infrastructures using an autoencoder 
[1], which is a type of unsupervised machine learning. Although the use of strong 
motion records observed at an instrumented structure for structural health monitoring is 
assumed, this study numerically generates seismic responses for a structural model. 

Herein, several seismic motions of differently scaled amplitudes were prepared to 
give input motions to a civil structure modeled as a Multi-Degree-Of-Freedom (MDOF) 
system. Furthermore, the obtained response records were used for machine learning. 
Various seismic motions prepared were adjusted to have a maximum amplitude of 50gal. 
Then, they were used as input ground motions to the structure to calculate the linear 
structural responses that were used for training the autoencoder. Another earthquake 
ground motion was then prepared and its maximum amplitude was adjusted in the range 
of 50 to 1600 gal to be used as input ground motions. The linear and nonlinear structural 
responses were then calculated to verify the effectiveness of the damage detection 
method. 
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DAMAGE DETECTION OF CIVIL STRUCTURES USING AUTOENCODER 
 

Herein, it was assumed that structural damage detection is attempted using strong 
motion observation records obtained from instrumented structures.  Although there is a 
high possibility of obtaining the response records of structures that are subjected to small 
and medium-sized earthquakes, the possibility of obtaining records with damage to 
structures is not high.  This implies that the probability of obtaining abnormal data is 
considerably lower than that of obtaining normal data.  Thus, as unsupervised machine 
learning, an autoencoder is used for damage detection of civil structures in this research.  
 
Autoencoder  
 

Machine learning methods are classified into supervised and unsupervised learning.  
Supervised learning can be appropriately used in fields in which a large amount of 
training data can be prepared.  However, if sufficient damage data are not available as 
in the field of damage detection of structures, unsupervised learning is preferable.  Thus, 
this research uses an autoencoder, which is an unsupervised machine learning method.  

The autoencoder used in this study is a three-layer neural network as shown in 
Figure 1.  The network learns the characteristics of the signal so that the data at the input 
layer is reconstructed at the output layer.  During the training stage, only normal data is 
used, and the neural network weights are determined.  Therefore, when the time series 
at the input layer is normal data, the original waveform is well reconstructed at the 
output layer, thus the reconstruction error, which is an index defined as the difference 
between the original waveform and the reconstructed waveform, becomes small.  
However, if the time series at the input layer contains abnormal data, the original 
waveform will not be reconstructed properly at the output layer, causing the 
reconstruction error to become large. This research attempts to detect structural damage 
by treating the structural response data unassociated with damage as normal data and 
the response data associated with damage as abnormal data.  It is noted for the 
application of autoencoder that this research used Deep Learning Toolbox for use with 
MATLAB [2].  
 

 
Figure 1.  Autoencoder 



Civil Structure Modeled as MDOF System  
 

As a model of general civil structure, a MDOF system was prepared.  Referring the 
book by Ohsaki [3], a 5-DOF model was prepared as follows.  To simplify the 
discussion below, mass and stiffness (see Figure 2 and TABLE I) were assumed to be 
constant for all the layers.  For the damping model, stiffness-proportional damping was 
assumed for simplicity with a first mode damping constant of 5%.  The natural 
frequency of the model is approximately 2.2 Hz.  As a method of considering structural 
damage, a nonlinear model (trilinear model) described in Figure 3 was incorporated 
throughout the layers.  
 
Input Ground Motions  
 

Five input ground motions (TABLE II) were prepared to calculate the seismic 
response of the structure to be used for training and verification for the machine learning.  
The first and second ground motions are El Centro earthquake record and Hachinohe 
wave provided by The Building Center of Japan.  The third one was observed on a stiff 
ground in Naruto during the 2013 near the Awajishima earthquake.  The fourth ground 
motion was observed at K-NET Urayasu station during 2011 Tohoku earthquake.  The 
last one was observed at K-NET Hakuba station during the 2014 northern Nagano 
earthquake.  
 
Preparation of Seismic Ground Motions for Structure  
 

Ground motions from No.2 to No.5 in TABLE II were used as the input ground 
motions for the structure after adjusting their amplitude to 50 gal.  The calculated ground 

TABLE I.  PARAMETERS FOR STRUCTURAL MODEL 
Parameter Value
Mass 5.0×104 (kg) 
Stiffness 1.2×106 (N/cm) 
Damping constant  0.05 (stiffness-proportional)  
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Figure 3.  Tri-linear model to describe the nonlinearity of 
the structural model

 
Figure 2.  Structural model 

 



motions were assumed to be linear seismic responses.  Input ground motion No.1 was 
used for the verification of the proposed damage detection method by adjusting its 
amplitude to 50, 200, 400, 800 and 1600gal.  
 
Seismic Response of Structure  
 

Seismic responses of the structure were calculated as shown in Figure 4 for the input 
ground motions (No.2 to No.5 in TABLE II).  The responses were considered to be 
linear as the maximum amplitude of these input motion was scaled to 50gal.  Figure 5 
depicts the seismic responses for the input ground motion No.1 (El Centro wave) with 
variation in maximum amplitude from 50 to 1600 gal.  Residual displacement can be 
clearly observed in Figure 5 (c), (d) and (e).  

Figure 6 depicts the relation between restoring force and displacement.  The 
restoring force characteristics indicate that the structural responses are linear when the 
maximum amplitudes of the input ground motions are 50 and 200 gal, however, exhibit 
nonlinear behavior for larger input ground motions (400, 800 and 1600 gal).  Note that 
this study only focuses on the displacement response of the first layer of the MDOF 
structure.  

TABLE II.  GROUND MOTIONS USED TO CALCULATE STRUCTURAL RESPONSES 
No. Earthquake Information  Earthquake Date Magnitude 
1 El Centro earthquake wave 1940.05.18 6.4 
2 Hachinohe wave during 1968 Tokachi-Oki earthquake 1968.05.16 7.8 
3 Stiff ground in Naruto during earthquake Near 

Awajishima  
2013.04.13 6.8 

4 K-NET Urayasu during 2011 Tohoku earthquake 2011.03.11 9.0 
5 K-NET Hakuba during 2014 earthquake in Nagano 2014.11.22 6.7 

                
(a) Hachinohe                                                            (b) Naruto 

 

                           
(c) Urayasu                                                                (d) Hakuba 

 
Figure 4.  Displacement responses for ground motion No.2 to No.5 scaled as 50gal)  
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COMPUTATIONAL RESULTS OF DAMAGE DETECTION BASED ON 
AUTOENCODER  

 
Since all the displacement time history records needed for the machine learning 

were prepared by the previous sections, the autoencoder can be applied to the data in 
this chapter.   
 
Preprocessing the Data for Training  
 

For the application of machine learning to the time history responses, maximum 
amplitude of each time series was scaled to 1 (i.e., unit amplitude responses) prior to its 
application.  The time history response data was divided into partial time series of each 
1 second comprising 100 data per sample.  Thus, reconstruction error values were 
calculated for each sample (i.e. every 100 data points).  It is noted that the hidden layer 
size of the autoencoder was set as 50.  
 

                 
(a) 50gal input                                                       (b) 200gal input 

                   
(c) 400gal input                                                       (d) 800gal input 

 
(e) 1600gal input 

 
Figure 5.  Displacement responses for ground motion No.1 (differently scaled)  
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Calculation Results of Damage Detection  
 

Figure 7 compares the original and the reconstructed waveform for input cases of 
50, 200, 400, 800 and 1600 in the increasing order.  For larger input case, residual 
displacements were observed, however the reconstructed waveforms cannot well 
describe the original waveforms.  

Figure 8 shows the reconstruction errors for input cases of 50, 200, 400, 800 and 
1600 gal.  The reconstruction error was found to be larger for larger input cases despite 
the standardization of the maximum amplitudes of the time history responses.  Notably, 
the reconstruction error values for the 50 and 200 gal input cases, which were considered 
to be linear responses, were almost the same.  These results indicate a relation between 
the magnitude of the reconstruction error and the degree of damage to the structure.   
 
Effect of Using Only the Main Part of the Structural Response for Training  
 

Up to this point, almost all data points from the beginning to the end of the structural 
response were used for training, however, the substantial part of the structural response 
is usually limited.  Therefore, additional consideration is performed here extracting the 
main part of the response record.  TABLE III summarizes which part of the waveform 

                
(a) 50gal input                                                     (b) 200gal input 

                
(c) 400gal input                                                   (d) 800gal input 

 
(e) 1600gal input 

Figure 6.  Restoring force characteristics  
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was used for training.  Approximately half of the data points were extracted from the 
original response waveform.  

Figure 9 shows the reconstruction errors for input cases of 50, 200, 400, 800 and 
1600 gal.  It can be seen that quite similar results as in Figure 8 was obtained although 
the amount of data used was reduced approximately by half.  
 
 
CONCLUSIONS  
 

This study investigated the possibility of using machine learning on the linear 
seismic response records of civil structures to detect the occurrence of damage from the 
nonlinear response records of structures during large earthquakes.  

Five seismic ground motions were prepared and four of them were adjusted to have 
a maximum amplitude of 50 gal.  Subsequently, they were used as the input ground 
motions to a 5-DOF structure, and the obtained linear displacement responses were used 
for training by the autoencoder.  Further, the maximum amplitude of the one remaining 
ground motion was adjusted to 50, 200, 400, 800 and 1600 gal, and these adjusted 
motions were used as input to the 5-DOF system to calculate linear and nonlinear 
responses for verification.  Structural damage detection was attempted by applying the 
autoencoder, which was already trained with the linear responses, to these responses.  
In the training and verification stages, the amplitude of the time history responses was 
adjusted to 1 (unit response) prior to application of the autoencoder.  

 
Figure 7.  Original and reconstructed waveforms  
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Figure 8.  Reconstruction error 
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Reconstruction error was found to be larger for larger input cases despite the 
standardization of the maximum amplitudes of the time series to 1 (unit response).  The 
reconstruction error values for 50 and 200 gal input cases, for which linear responses 
were obtained, were almost identical.  These results indicate a relation between the 
magnitude of the reconstruction error and the degree of damage to the structure.  
Additional examination was conducted extracting the main half part of the structural 
response record for training the machine learning model, however, quite similar results 
of damage detection was obtained although the amount of data used for the training was 
reduced approximately by half.  
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Figure 9.  Reconstruction error (main half of structural response)  

TABLE III.  EXTRACTED SECTIONS FROM STRUCTURAL RESPONSE USED FOR TRAINING 
No. Earthquake Information and input ground motion Used structural response data 

Almost all Main part only 
2 Hachinohe wave during 1968 Tokachi-Oki earthquake 1 – 23400 

(234 seconds) 
2001 – 13700 
(117 seconds) 

3 Stiff ground in Naruto during earthquake Near 
Awajishima  

1 – 6000 
(60 seconds) 

1001 – 4000 
(30 seconds) 

4 K-NET Urayasu during 2011 Tohoku earthquake 1 – 30000 
(300 seconds) 

5001 – 20000 
(150 seconds) 

5 K-NET Hakuba during 2014 earthquake in Nagano 1 – 8100 
(81 seconds) 

1001 – 5000 
(40 seconds) 




