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ABSTRACT

In Japan, the deterioration of civil structures constructed during the period of strong
economic growth combined with the shortage of engineers has become a serious social
problem. One solution to address this issue is to improve the efficiency of structural
maintenance and management using sensors. The application of machine learning
method is expected to advance such efforts. This research attempts the damage
detection of civil structures using an autoencoder, which is a type of unsupervised
machine learning. The study revealed that there is a relation between the magnitude of
reconstruction error and the degree of damage to the structure.

INTRODUCTION

In Japan, the deterioration of civil structures constructed during the period of strong
economic growth (mainly since the 1960s) combined with the shortage of engineers has
become a serious social problem. Improving the efficiency of maintenance and
management using sensors is one solution to address this issue. The application of
machine learning methods to data analysis is expected to advance such efforts. The
present research attempts damage detection of civil infrastructures using an autoencoder
[1], which is a type of unsupervised machine learning. Although the use of strong
motion records observed at an instrumented structure for structural health monitoring is
assumed, this study numerically generates seismic responses for a structural model.

Herein, several seismic motions of differently scaled amplitudes were prepared to
give input motions to a civil structure modeled as a Multi-Degree-Of-Freedom (MDOF)
system. Furthermore, the obtained response records were used for machine learning.
Various seismic motions prepared were adjusted to have a maximum amplitude of 50gal.
Then, they were used as input ground motions to the structure to calculate the linear
structural responses that were used for training the autoencoder. Another earthquake
ground motion was then prepared and its maximum amplitude was adjusted in the range
of 50 to 1600 gal to be used as input ground motions. The linear and nonlinear structural
responses were then calculated to verify the effectiveness of the damage detection
method.
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DAMAGE DETECTION OF CIVIL STRUCTURES USING AUTOENCODER

Herein, it was assumed that structural damage detection is attempted using strong
motion observation records obtained from instrumented structures. Although there is a
high possibility of obtaining the response records of structures that are subjected to small
and medium-sized earthquakes, the possibility of obtaining records with damage to
structures is not high. This implies that the probability of obtaining abnormal data is
considerably lower than that of obtaining normal data. Thus, as unsupervised machine
learning, an autoencoder is used for damage detection of civil structures in this research.

Autoencoder

Machine learning methods are classified into supervised and unsupervised learning.
Supervised learning can be appropriately used in fields in which a large amount of
training data can be prepared. However, if sufficient damage data are not available as
in the field of damage detection of structures, unsupervised learning is preferable. Thus,
this research uses an autoencoder, which is an unsupervised machine learning method.

The autoencoder used in this study is a three-layer neural network as shown in
Figure 1. The network learns the characteristics of the signal so that the data at the input
layer is reconstructed at the output layer. During the training stage, only normal data is
used, and the neural network weights are determined. Therefore, when the time series
at the input layer is normal data, the original waveform is well reconstructed at the
output layer, thus the reconstruction error, which is an index defined as the difference
between the original waveform and the reconstructed waveform, becomes small.
However, if the time series at the input layer contains abnormal data, the original
waveform will not be reconstructed properly at the output layer, causing the
reconstruction error to become large. This research attempts to detect structural damage
by treating the structural response data unassociated with damage as normal data and
the response data associated with damage as abnormal data. It is noted for the
application of autoencoder that this research used Deep Learning Toolbox for use with
MATLAB [2].
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Figure 1. Autoencoder



Civil Structure Modeled as MDOF System

As a model of general civil structure, a MDOF system was prepared. Referring the
book by Ohsaki [3], a 5-DOF model was prepared as follows. To simplify the
discussion below, mass and stiffness (see Figure 2 and TABLE I) were assumed to be
constant for all the layers. For the damping model, stiffness-proportional damping was
assumed for simplicity with a first mode damping constant of 5%. The natural
frequency of the model is approximately 2.2 Hz. As a method of considering structural
damage, a nonlinear model (trilinear model) described in Figure 3 was incorporated
throughout the layers.

Input Ground Motions

Five input ground motions (TABLE II) were prepared to calculate the seismic
response of the structure to be used for training and verification for the machine learning.
The first and second ground motions are El Centro earthquake record and Hachinohe
wave provided by The Building Center of Japan. The third one was observed on a stiff
ground in Naruto during the 2013 near the Awajishima earthquake. The fourth ground
motion was observed at K-NET Urayasu station during 2011 Tohoku earthquake. The
last one was observed at K-NET Hakuba station during the 2014 northern Nagano
earthquake.

Preparation of Seismic Ground Motions for Structure

Ground motions from No.2 to No.5 in TABLE II were used as the input ground
motions for the structure after adjusting their amplitude to 50 gal. The calculated ground

TABLE I. PARAMETERS FOR STRUCTURAL MODEL

m = 50(ton) Parameter Value
Mass 5.0X10% (kg)
k=1200(2V/ cm) Stiffness 1.2X10% (N/cm)
Damping constant 0.05 (stiffness-proportional)
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Figure 2. Structural model Figure 3. Tri-linear model to describe the nonlinearity of
the structural model



TABLE II. GROUND MOTIONS USED TO CALCULATE STRUCTURAL RESPONSES

No. | Earthquake Information Earthquake Date Magnitude

1 El Centro earthquake wave 1940.05.18 6.4

2 Hachinohe wave during 1968 Tokachi-Oki earthquake | 1968.05.16 7.8

3 Stiff ground in Naruto during earthquake Near 2013.04.13 6.8
Awajishima

4 K-NET Urayasu during 2011 Tohoku earthquake 2011.03.11 9.0

5 K-NET Hakuba during 2014 earthquake in Nagano 2014.11.22 6.7
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Figure 4. Displacement responses for ground motion No.2 to No.5 scaled as 50gal)

motions were assumed to be linear seismic responses. Input ground motion No.1 was
used for the verification of the proposed damage detection method by adjusting its
amplitude to 50, 200, 400, 800 and 1600gal.

Seismic Response of Structure

Seismic responses of the structure were calculated as shown in Figure 4 for the input
ground motions (No.2 to No.5 in TABLE II). The responses were considered to be
linear as the maximum amplitude of these input motion was scaled to 50gal. Figure 5
depicts the seismic responses for the input ground motion No.1 (El Centro wave) with
variation in maximum amplitude from 50 to 1600 gal. Residual displacement can be
clearly observed in Figure 5 (c), (d) and (e).

Figure 6 depicts the relation between restoring force and displacement. The
restoring force characteristics indicate that the structural responses are linear when the
maximum amplitudes of the input ground motions are 50 and 200 gal, however, exhibit
nonlinear behavior for larger input ground motions (400, 800 and 1600 gal). Note that
this study only focuses on the displacement response of the first layer of the MDOF
structure.
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Figure 5. Displacement responses for ground motion No.1 (differently scaled)

COMPUTATIONAL RESULTS OF DAMAGE DETECTION BASED ON
AUTOENCODER

Since all the displacement time history records needed for the machine learning

were prepared by the previous sections, the autoencoder can be applied to the data in
this chapter.

Preprocessing the Data for Training

For the application of machine learning to the time history responses, maximum
amplitude of each time series was scaled to 1 (i.e., unit amplitude responses) prior to its
application. The time history response data was divided into partial time series of each
1 second comprising 100 data per sample. Thus, reconstruction error values were

calculated for each sample (i.e. every 100 data points). It is noted that the hidden layer
size of the autoencoder was set as 50.
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Calculation Results of Damage Detection

Figure 7 compares the original and the reconstructed waveform for input cases of
50, 200, 400, 800 and 1600 in the increasing order. For larger input case, residual
displacements were observed, however the reconstructed waveforms cannot well
describe the original waveforms.

Figure 8 shows the reconstruction errors for input cases of 50, 200, 400, 800 and
1600 gal. The reconstruction error was found to be larger for larger input cases despite
the standardization of the maximum amplitudes of the time history responses. Notably,
the reconstruction error values for the 50 and 200 gal input cases, which were considered
to be linear responses, were almost the same. These results indicate a relation between
the magnitude of the reconstruction error and the degree of damage to the structure.

Effect of Using Only the Main Part of the Structural Response for Training

Up to this point, almost all data points from the beginning to the end of the structural
response were used for training, however, the substantial part of the structural response
is usually limited. Therefore, additional consideration is performed here extracting the
main part of the response record. TABLE III summarizes which part of the waveform
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Figure 7. Original and reconstructed waveforms
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Figure 8. Reconstruction error

was used for training. Approximately half of the data points were extracted from the
original response waveform.

Figure 9 shows the reconstruction errors for input cases of 50, 200, 400, 800 and
1600 gal. It can be seen that quite similar results as in Figure 8 was obtained although
the amount of data used was reduced approximately by half.

CONCLUSIONS

This study investigated the possibility of using machine learning on the linear
seismic response records of civil structures to detect the occurrence of damage from the
nonlinear response records of structures during large earthquakes.

Five seismic ground motions were prepared and four of them were adjusted to have
a maximum amplitude of 50 gal. Subsequently, they were used as the input ground
motions to a 5-DOF structure, and the obtained linear displacement responses were used
for training by the autoencoder. Further, the maximum amplitude of the one remaining
ground motion was adjusted to 50, 200, 400, 800 and 1600 gal, and these adjusted
motions were used as input to the 5-DOF system to calculate linear and nonlinear
responses for verification. Structural damage detection was attempted by applying the
autoencoder, which was already trained with the linear responses, to these responses.
In the training and verification stages, the amplitude of the time history responses was
adjusted to 1 (unit response) prior to application of the autoencoder.



TABLE [II. EXTRACTED SECTIONS FROM STRUCTURAL RESPONSE USED FOR TRAINING

No. | Earthquake Information and input ground motion Used structural response data
Almost all Main part only
2 Hachinohe wave during 1968 Tokachi-Oki earthquake | 1—23400 2001 —13700
(234 seconds) (117 seconds)
3 Stiff ground in Naruto during earthquake Near 1 - 6000 1001 —4000
Awajishima (60 seconds) (30 seconds)
4 K-NET Urayasu during 2011 Tohoku earthquake 1 -30000 5001 —20000
(300 seconds) (150 seconds)
5 K-NET Hakuba during 2014 earthquake in Nagano 1-8100 1001 — 5000
(81 seconds) (40 seconds)
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Figure 9. Reconstruction error (main half of structural response)

Reconstruction error was found to be larger for larger input cases despite the
standardization of the maximum amplitudes of the time series to 1 (unit response). The
reconstruction error values for 50 and 200 gal input cases, for which linear responses
were obtained, were almost identical. These results indicate a relation between the
magnitude of the reconstruction error and the degree of damage to the structure.
Additional examination was conducted extracting the main half part of the structural
response record for training the machine learning model, however, quite similar results
of damage detection was obtained although the amount of data used for the training was
reduced approximately by half.
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