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ABSTRACT 

In this paper, we introduce a novel deep learning technique for anomaly detection 
in the context of Population-Based Structural Health Monitoring (PB-SHM). The pro- 
posed method eliminates manual feature engineering by utilizing Power Spectral Density 
(PSD) as input, allowing examination of the entire spectrum. It is based on an auxiliary 
classification task, wherein the model is trained to discriminate between different sys- 
tems according to their dynamic response. The classifier confidence is then used during 
inference for damage detection. The neural network extracts discriminative features 
commonly impacted by damage, which are employed to create a normality model. The 
efficacy of our method is demonstrated on a simulated population of 20 individual 8- 
DOF systems influenced by a latent environmental variables, emphasizing its potential 
for PB-SHM under diverse conditions. Our technique achieves performance comparable 
to resonance frequency-based methods while potentially exhibiting higher capability in 
complex structures with multiple modes. Anomalies caused by a 5% decrease in stiffness 
are successfully detected, yielding an AUC of 0.94.

INTRODUCTION 

Structural Health Monitoring (SHM) plays a crucial role in ensuring the safety, reli- 
ability, and performance of complex engineering structures across various applications. 
SHM techniques aim to detect and analyze damage in structures, enabling the implemen- 
tation of strategies to increase component service life and prevent catastrophic failure [1]. 
Vibration-based monitoring has emerged as a primary focus in SHM for damage detec- 
tion, as damage alters structural characteristics, such as stiffness, which are reflected in 
the measured vibration response of the structure [2]. Consequently, signal processing 
techniques capable of extracting damage-sensitive features from vibration signals and 
identifying subtle changes over time have been recurring examples of SHM solutions. 
Additionally, accounting for Environmental and Operational Conditions (EOC) is neces- 
sary since EOCs can induce changes in damage-sensitive features similar in magnitude 
to those caused by damage [3]. 
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Historically, SHM research has relied on feature engineering, which revolve around
computing predefined features and performing statistical analysis thereon to account for
EOCs [4]. As features are engineered to target specific anomalies, they are not failure
mode agnostic, necessitating custom features for different SHM applications. Various
features have been used for damage detection, such as cross-correlation of measured
data [5], modal parameters [6], including those obtained from operational modal analysis
(OMA) [7]. Auto-encoders have also been employed for novelty detection in SHM data,
utilizing environmental data and modal parameters to train normality models [8].

These traditional SHM solutions, which depend on feature engineering, are powerful
but time-consuming and require significant knowledge of the structure. Recent research
has shifted focus to SHM models that eliminate the need for extensive feature engineer-
ing and ad hoc hypotheses for failure modes [9, 10].

An additional opportunity to potentially improve anomaly detection systems might
arise from the increasing amount of SHM data that is being collected on similar struc-
tures, e.g. wind turbines. Population-based SHM (PB-SHM) is an emerging field that
focuses on transferring knowledge from one structure to another with minimal data [11].
Inspired from the work of [11], this contribution develops a novel deep learning approach
for anomaly detection in the context of population-based SHM, utilizing an auxiliary
classification task. Our method uses Power Spectral Density (PSD) as input, providing a
comprehensive view of the structure’s state without measuring environmental variables
or manual feature engineering. We validate our approach on a simulated population of 20
individual 8-DOF systems affected by simulated environmental variables, demonstrating
its potential for PB-SHM, particularly in the presence of environmental variability.

The work proposed in this paper is inspired from the recent research on out-of-
distribution detection where the goal is to ensure the reliability and safety of deep learn-
ing [12].

DATASET

In this study, we utilize a dataset generated from twenty 8-degree-of-freedom (DOF)
systems to evaluate our proposed structural health monitoring (SHM) strategy. This
section will detail the system description and simulation process, forming the basis for
model implementation and evaluation.

System Description

In this research, the data used was inspired by a study conducted in [11]. The 8-
degree of freedom (DOF) population was created by first designing an ideal system,
which served as the basis for generating 20 members with minimal variations in pa-
rameter values to simulate construction variability. As highlighted in [11], the resulting
population was classified as strongly homogeneous.

A schematic illustration of the 8-DOF system is shown in Figure 1, where uj(t) and
zj(t) represent the input and output acceleration of mass j at time t, respectively. In
addition to the variation between the individuals introduced in [11], we also added a
variation due to a latent variable that affected the stiffness of each element of the struc-
ture to model the effect of environmental conditions on the structure, e.g. Temperature.



Figure 1. A schematic representation of the 8-dof [11]

TABLE I. SYSTEM PARAMETERS

j 1 2 3 4 5 6 7 8
mj(kg) 0.5318 0.4040 0.4101 0.4123 0.3960 0.3809 0.4086 0.3798

kj(kN/m) 1e-6 56.70 56.70 56.70 56.70 56.70 56.70 56.70
cj(Ns/m) 8.7460 8.7916 8.8012 8.8512 8.7146 8.7378 8.5494 8.7521
αj(kN/m) 1e-9 -20 -20 350 -30 -350 100 -45

We modeled the effect of the latent variable on stiffness through a linear relationship,
where k
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, where the index i refers to each

individual of the population. To generate a strongly homogeneous group, the densities
P (Θi) that describe the underlying distribution of these parameters were modeled as
Gaussian distributions with low dispersion. The system parameters for the ideal 8-DOF
system were listed in Table I. A strongly homogeneous population was generated by
sampling 20 parameter sets Θi from the distributions as shown in equation 1, defining
the 20 similar members.
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(i)
j ∼ N (kj, 0.01× kj)

c
(i)
j ∼ N (cj, 0.08× cj) , α

(i)
j ∼ N (αj, 0.01× αj)

(1)

Figure 2 illustrates the impact of the latent variable on the system dynamics. It can
be seen that as the value of the latent variable increases, the transfer function between
mass 8 and mass 1 is affected. The selection of αj was based on the intention to produce
varying effects of the environmental variable on different modes of the system. Some
modes affected by increased values while others by decreased resonance frequency. Ad-
ditionally, the relationship between the modes and the latent variable was designed to be
non-uniform, with some modes exhibiting a linear relationship with the latent variable
while others exhibit a quadratic relationship. To simulate anomalies in the system, we
reduced the stiffness k5 by 1%, 3% . . . 13%. The effect of anomalies on the transfer
function |H(1, 8)| is shown in Figure 3, we observe that this anomaly mainly affects the
last mode(s). Consistent with real-world experience, the variation induced by the latent
variable far exceeds the effect of the considered anomalies in the system. As a result it
will be difficult to detect damage without EOC compensation.



Figure 2. System variability of a sin-
gle member of the population due the
latent environmental variable

Figure 3. The effect of the anomaly
on the system transfer function
|H(1, 8)| of a single member of the
population

Simulation

In this study, we utilize a dataset comprising a population of twenty 8-degree-of-
freedom (DOF) systems. Each system is subjected to excitation with white noise at
the first degree of freedom (u1(t)), while the acceleration of the eighth mass (z8(t)) is
computed. To introduce variability in the system’s excitation, we sample the excita-
tion amplitude for each simulation from a Weibull distribution. The Weibull distribution
is defined by the following parameters: shape parameter (k = 1.9), scale parameter
(λ = 5), and location parameter (θ = 10). Consequently, the excitation amplitude dis-
tribution exhibits a mean of 14.5 N and spans a range of 10 N to 30 N . Additionally, to
simulate varying environmental conditions across simulations, we introduce variability
in the latent environmental variable. The latent environmental variable is sampled from
a normal distribution with a mean (µ = 50) and a standard deviation (σ = 30).

The simulations are conducted for a total duration of 10 seconds, with a sampling
frequency of 400 Hz. The Power Spectral Density (PSD) of the eighth mass is computed
using the Welch algorithm [13] implemented in the Scipy package [14]. The dataset
comprises 1,200 normal-condition samples per system, along with an additional 200
samples for each anomaly level, resulting in a total of 2,600 simulations per system.
Out of the normal-condition samples, 600 samples are allocated for testing, while the
remaining 600 samples are used for model fitting. In total, the dataset consists of 52,000
samples for the entire population.

MODEL IMPLEMENTATION

This section presents the proposed SHM strategy and a baseline approach for com-
parison. The objective is to address the anomaly detection problem with minimal pre-
processing and feature engineering. In a final SHM schema, these two approaches are
complimenting each other not competing.

Proposed Approach



Figure 4. Flowchart illustrating the implementation of DeepSpectra Anomaly Detection
(DSAD)

This section presents the proposed approach, referred to as the DeepSpectra Anomaly
Detection (DSAD) method, for anomaly detection in the context of population-based
SHM. The proposed approach utilizes the frequency representation of acceleration data
as input and trains a neural network model to distinguish between each system based on
the content of their PSD.

To obtain the PSD, To obtain the PSD, a window of 1024 samples is used with the
p-Welch algorithm, taking into account the sampling frequency of 400Hz, the resulting
frequency resolution is 0.39Hz. Prior to inputting them into the model, the PSDs are sub-
jected to log and min-max normalization. The neural network architecture employed in
this study consists of six dense layers with the following dimensions: [512, 256, 128, 64,
32, 20]. To enhance model stability during training, L1 regularization is applied to the
weights of the layers, and Batch Normalization regularization is incorporated between
layers. The decision to incorporate these regularization techniques is based on previous
studies on understanding the role of regularization methods in machine learning [15, 16].

In the training phase, the model is trained to classify the PSD into the different sys-
tems from where they are generated. This auxiliary task allows the model to learn a
discriminative set of features of the input signal. The assumption is that the features that
allow to discriminate between systems are those that typically become affected by dam-
age (i.e. zeroes and poles). Figure 4 illustrates the methodology, which shows a clear
separation between the training and monitoring (or inference) stages of the approach.

The final layer (logit layer in Figure 4) of the model contains 20 neurons, correspond-
ing to the 20 different systems, and a Softmax function is applied as an activation func-
tion, scaling logits into probabilities[17]. The neuron with the highest activation in the fi-
nal layer dictates the system predicted by the model. To visualize the learned embedding
of the penultimate layer (before the logit layer), we project it into a lower-dimensional
space using Uniform Manifold Approximation and Projection (UMAP) [18]. UMAP, a
nonlinear dimensionality reduction method, visualizes clusters or groups of data points
and their relative proximity. Figure 5 displays the UMAP visualization of the penulti-
mate layer’s embedding, with the original 32-dimensional embedding of the penultimate



Figure 5. UMAP visualization of the penultimate layer’s embedding. Each color repre-
sents a distinct system in the population.

layer mapped to two dimensions. The figure demonstrates how the model has learned a
feature set, inferring each system to a distinct cluster.

Lastly, the anomaly index is defined based on the penultimate layer’s embedding of
the inferred PSD. Although one could use the Softmax-normalized value as a proxy for
the model’s aleatoric uncertainty (uncertainty arising from data, as opposed to epistemic
uncertainty resulting from the model), relying on Softmax to quantify model certainty
can be problematic, as detailed in [15]. Therefore, we employ a Gaussian Mixture Model
(GMM) in the penultimate layer. We fit the GMM using the training data’s embedding,
setting the number of mixture components equal to the population size, which in this
case is 20. The log-likelihood of the inferred PSD in the embedding under the mixture
is then used as an anomaly index.

Baseline Approach

To compare the performance of the novel method, we also implement a solution
using the system’s resonance frequencies as damage sensitive engineered features. We
compute the exact resonance frequency of the different systems, excluding the first mode
of the system at 8e-5 Hz. We then add Gaussian noise with a standard deviation of 0.2Hz,
as real-life situations only provide an estimation of the value. This results in a relative
error of less than 1% for 68% of the time for the second mode at 20Hz. The anomaly is
detected by recognizing a shift in the resonance frequency.

As our simulation includes environmental effects, it is essential to eliminate these
effects to prevent masking the resonance frequency variations caused by anomalies. We
employ a PCA-based approach to identify a linear subspace where environmental effects
are located and compute the residual of the projection onto this subspace to remove the
environmental effects[3]. The Scree plot criterion [19], also known as the ’elbow rule’,
is utilized to determine the number of principal components to consider. The intention is
not to compete with the baseline method, as one is feature-based and the other considers
the entire spectrum. These two methods perform better when complementing each other.
The objective here is to have a better quantification of the performance of the proposed
approach w.r.t. a commonly accepted strategy for SHM.

DISCUSSION OF THE RESULT AND COMPARISON



Figure 6. PSD Examples: Comparing
High and Low RMS Signals with Noise
at SNR of 18 and 30 dB

Figure 7. Control Chart for System 1,
Using Only Test Data.Vertical lines rep-
resent different anomaly levels.

In this section, we evaluate the models’ performance using the well-known Area Un-
der the Curve (AUC) metric, which considers the distribution of healthy and anomalous
datasets. A higher AUC indicates better separation between these distributions, with a
perfect detector achieving an AUC of 1 and random assignment resulting in an AUC of
0.5. The AUC can also be interpreted as the probability of detecting an anomaly when
the inferred point is anomalous. We argue that the AUC metric can be somewhat strict
in the context of SHM. While a higher AUC indicates quicker anomaly detection, it is
important to note that even with a moderately low AUC e.g. 0.7, the anomaly may not
be immediately apparent. However, in the context of SHM one can assume anomalies to
be persistent and remain present over time, the shift in the anomaly index can gradually
become more evident, eventually leading to anomaly detection.

Performance Evaluation and Comparison of Anomaly Detection Approaches

We consider two scenarios in this study. The first scenario involves the dataset with-
out any additional noise to the PSD. Where variations in the dataset primarily attributed
to latent environmental factors, excitation fluctuations, and population differences. In the
second scenario, we add a constant power noise to the signals through the whole dataset,
resulting in SNRs of 10, 18, and 30 dB for a signal with an RMS equal to the 5th per-
centile of the entire dataset. Figure 6 displays the PSD plots of two signals with extreme
RMS values. The signal with a low RMS corresponds to the 5th percentile of the RMS
distribution, while the blue PSD corresponds to the 95th percentile. It is evident that the
noise with an SNR of 18 dB floods the higher-order mode, which is the most sensitive
to damage. To account for this in the baseline approach, the eighth-order mode is dis-
regarded. We compute the AUC between the training data and healthy testing data, and
subsequently, the AUC using the 200 samples of the healthy testing data and anomalous
data for each anomaly level. Table II provides a performance comparison between the
proposed approach and the baseline model, illustrating the average performance across
the entire population. The PCA-based approach, without altering the modal frequencies,
demonstrates near-perfect results. This is expected since the reduction of stiffness di-
rectly affects the modal frequencies, and the PCA effectively captures this dependency.
When a Gaussian alteration with a 0.2 Hz standard deviation is introduced (half of the



TABLE II. SUMMARY OF PERFORMANCE FOR BOTH APPROACHES

Proposed Approach (DSAS) Baseline

All modes
mode 8
removed

Anomaly
level No noise 30 dB 18dB 10dB 0 std 0.2 std 0.2 std

0% 0.5 0.51 0.50 0.5 0.5 0.5 0.5
1% 0.59 0.53 0.53 0.51 0.99 0.55 0.5
3% 0.87 0.67 0.57 0.52 0.99 0.76 0.54
5% 0.99 0.79 0.64 0.56 0.99 0.93 0.59
7% 0.99 0.87 0.72 0.6 0.99 0.98 0.66
9% 0.99 0.92 0.78 0.67 0.99 0.99 0.74

11% 1.00 0.94 0.82 0.72 1.00 0.99 0.80
13% 1.00 0.96 0.89 0.78 1.00 0.99 0.89

PSD resolution), the baseline model’s performance declines and becomes comparable to
DSAD method. The performance of DSAD method declines with an 18 dB noise level,
mainly due to the final mode being inundated by noise. To ensure a fair comparison,
we remove this mode’s eigenfrequency from the baseline model, leading to comparable
performance once again. Figure 7 illustrates a control chart for one of the systems in the
population, constructed using the 1st scenario (no noise). The vertical lines on the chart
represent different anomaly levels. The lower control limit (LCL) is established using
the training healthy data, calculated as the mean minus 3 standard deviations, and is de-
picted as a horizontal line. Notably, a 1% anomaly level is detectable, corresponding to
an AUC of 0.65 (low AUC) for this particular system. This demonstrate that in the SHM
context a low AUC e.g. 0.65 is acceptable. This outcome provides evidence supporting
the effectiveness of our approach in detecting anomalies, even with presence of noise.

CONCLUSION

In conclusion, this study presents a novel anomaly detection method for PB-SHM,
eliminating manual feature engineering and environmental variable measurements. Us-
ing deep learning models and PSD as input, our approach offers a comprehensive view of
a structure’s state. Tested on 20 simulated 8-DOF systems, the method shows potential
for PB-SHM in environments with variability. Comparing favorably to resonance fre-
quency methods, our approach could excel in complex structures with multiple modes.
Future research could involve Bayesian neural networks, different types of anomalies
and real structure data.

Data Availability

The processed data (PSD) for the four noise scenarios can be found on Zenodo [20].
The code used to generate the time domain data, process it, and train the models is
available in [21].
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