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ABSTRACT

We introduce iFlyNet, a novel flight state awareness system that is robust, low-
profile, and more reliable in harsh conditions than conventional methods. The system
interprets the global flight state of a UAV by monitoring multimodal structural character-
istics of its wings, where aerodynamics are predominant. A microfabricated transducer
array consisting of temperature compensated strain and piezoelectric sensors captures
the wing’s static and dynamic stress profiles at multiple spatial locations. This data in-
forms our deep one-dimensional convolutional neural network-based sensor fusion algo-
rithm designed to run on flight vehicle computer at near real-time speeds. Wind tunnel
experiments with the sensors installed on a single wing demonstrate that iFlyNet can
accurately predict the flight state variables of airspeed and angle of attack across the
flight envelope of the UAV. In addition, we also show the benefits of our system com-
pared to status-quo techniques through accurate predictions of lift and drag forces and
high-precision tracking of stall occurrence at highly variable environmental conditions.
By nearly matching the readings of traditional state measurement devices at a fraction of
weiltht as well as providing accurate predictions of flight performance and safety-critical
metrics, our system offers a unique paradigm for aircraft state identification.

INTRODUCTION

Aerospace engineering has long relied on two fundamental principles: (i) Model-
ing the physical behavior of aircraft accurately during the development phase, so the
manufactured aircraft’s behavior aligns closely with the design-phase expectations, and
(i1) acquiring flight conditions of aircraft accurately during the operation phase, so the
pilot has a robust situational awareness of the aircraft [1]. Conventionally, these two
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Figure 1. Illustration of the modeling paradigm that the current study is based on. In-
spired by avian flight, distributed sensors on wing capture multi-local structural charac-
teristics, which describe the overall structural state of the component. With such a deep
knowledge, fluid-structure relations are accurately inferred to estimate the global flight
characteristics of aircraft.

principles have largely been decoupled. The former generally concerned the design and
analysis engineers while addressing the latter has been the responsibility of avionics and
reliability engineers. Nevertheless, recent developments in numerical simulation tech-
niques [2] and accurate data-driven representations achieved by advanced models [3-35]]
started bringing the aforementioned disciplines closer in the pursuit of developing con-
stantly updating “digital twin” models of aircraft from real-time sensor data [67].

The idea of inputting real-time sensor data to a model as its initial/boundary condi-
tion(s) is broad and practiced in countless applications. The current study investigates
the case in which a number of sensors capture structural mechanics-related data of an
aircraft wing, and the model predicts metrics related to global flight characteristics of
the aircraft. Fluid-structure interaction research suggests a close coupling between the
structural state of an aerodynamic component and the global response of the aerody-
namic body and motivates this approach [8]. Moreover, a review of avians’ flight rou-
tines also reveals that biology also chooses a similar fly-by-feel approach, where birds
become aware of their flight environment by considering the loading in their wings [9].

Inspired by biological flight, the current study introduces a data-driven modeling
technique for interpreting flight aerodynamics of aircraft from distributed multi-modal
sensors that capture structural characteristics of one of the wings, as illustrated in Figure
[

The rest of this article is organized as follows: First, the hardware platform consisting
of a sensor network-embedded UAV is introduced. Then, the data acquisition specifica-
tions of the sensors, along with the wind tunnel experimentation setup, are discussed.
Following hardware, the iFlyNet software is introduced. By detailing the system archi-
tecture and estimation models, the working principles of the real-time flight awareness
system are laid out in this section. After discussing the methods, a comparison of met-
rics measured by a set of wind tunnel sensors and estimated via the proposed approach
is presented for a representative flight condition. Finally, the article is concluded with
remarks.

HARDWARE SETUP

Sensor Network-integrated UAV
The system presented in this study is demonstrated on a Blackswift SO Unmanned
Aerial Vehicle (UAV) through wind tunnel experiments. The vehicle, which is originally
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Figure 2. (a) An illustration of the UAV with the sensor network embedded in one of
its wings. (b) The sensor network layout. (c) Final wing surface with integrated sensor
network after vacuum bagging operation.

designed to make high-resolution atmospheric thermodynamic measurements, contains
a rich set of built-in sensors that provide an excellent comparison basis to the proposed
system. In addition, its high aspect ratio wing design with 54.6 in. span, closed wingbox
structure, and SwiftCore flight management system with persistent telemetry data are
several other factors that prompted us to choose this platform.

Distributed multimodal sensing is enabled by a stretchable sensor network deployed
to the left wing of this UAV, as illustrated in Figure 2(a). The sensor network consists
of 7 PZTs and 6 co-located SG/RTD pairs distributed strategically to maximize the in-
formation collected from the wing. By employing SG and RTD elements that share
the same spatial locations, an effective compensation mechanism for removing thermal
strain effects is achieved. The layout of the sensor network is given in Figure 2|b), and
more details on it can be found in [[10]. Upon microfabrication and bi-directional stretch-
ing, the sensor network is permanently integrated into the wing via vacuum bagging, as
shown in Figure {c).

Data Acquisition

The analog data collected by the sensor network hardware is digitized by the IMGe-
nie Pro Data Acquisition Unit (DAQ) developed by Acellent Technologies. The device,
which allows for continuous sampling from all deployed sensors, is designed with sen-
sor network specifications in mind. The most important of these is the utilization of a
custom Wheatstone bridge amplification circuit to accommodate the uniquely high resis-
tance values of the SGs and RTDs in the system compared to their commercial counter-
parts. Introduced due to the very thin profile of the sensors, the devices have a nominal
resistance of approximately 15 kOhm as opposed to the common 350 Ohm profile. More
details on the sensor network can be found in [10]], and more details on IMGenie Pro can



Figure 3. Experimental UAV in the wind tunnel.

be obtained from Acellent Technologies.

The data from PZTs and SGs/RTDs are collected at a fixed resolution of 16-bit and
variable sampling rates of 10,000 Hz and 125 Hz, respectively. The 16-bit resolution is
confirmed to give greater than 0.1 °C and 1 pe measurement precision, which are deemed
adequate for the current application. The variable sampling rate ensured capturing high-
frequency dynamics via PZTs while minimizing the power and storage requirements for
the static measurements.

Wind Tunnel Experimental Setup

A full-scale system test is performed in a closed-throat subsonic wind tunnel of a
test section 7 ft. x 10 ft. x 12 ft. (h, w, 1). The experimental UAV is placed in the
wind tunnel with variable pitch control, as shown in Figure 3] Since the flight vehicle
is tested as opposed to an aerodynamic model, precautions such as tightly securing the
control surfaces are taken to ensure safe and consistent experimentation. During tests,
data is collected simultaneously from (i) built-in wind tunnel sensors, (i1) built-in UAV
sensors, (iii) IMGenie Pro, and (iv) five video cameras overlooking the wind tunnel and
synchronized in post-processing.

The wind tunnel tests consisted of training data collection and dynamic model eval-
uation campaigns. In the training campaign, the aircraft is exposed to airspeed and
angle of attack combinations that comprise a finely discretized set of its flight enve-
lope (airspeed: [7-20] m/s, AoA: [0-16]°, each with 1 unit increments), as in Figure
H(a). Through this process, a balanced and well-controlled pool of labeled sensor data
is collected for training the models. For the dynamic test campaign, on the other hand,
the objective has been to collect datasets representative of real-life flight scenarios for
inference-time model performance evaluation. Four dynamic campaigns are conducted
with the airspeed and angle of attack of the UAV altered semi-randomly within the flight
envelope of the UAV. The flight condition sequence for two of the dynamic tests is given
in Figure @ (b).

SOFTWARE SETUP

System Architecture
The iFlyNet flight awareness system involves inferring three key flight metrics of
the UAV from sensor network data. These are (i) whether the aircraft is experiencing
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Figure 4. Wind tunnel test campaigns. (a) Model training campaign, (b) dynamic test
campaign

stall condition, (i1) airspeed (V) and angle of attack (AoA) variables of the aircraft,
and (iii) lift and drag forces exerted on the aircraft. These estimations are made by
supervised learning models that continuously run in inference mode to provide near
real-time awareness. The model details are discussed in the following section.

The real-time behavior of estimations is achieved by ensuring that the models run
at a continuous 30Hz rate, i.e.: A new estimation is made from the most recent data
every 0.03 seconds. In accordance with the sampling rates, the inference batches consist
of 333 data points for PZT and 4 data points for the SG/RTD. As previously mentioned,
this mismatch is introduced to optimize the data fidelity, power consumption, and storage
characteristics of the DAQ. For model training purposes, the mismatch is alleviated by
extrapolating the SG/RTD data with a linear interpolator. In training time, the entire
training and validation set data are inputted into the models in batches. On the other
hand, in inference time, the dynamic data is continuously fed to the models, and the
models are asked to make estimations at a 30 Hz rate, as described earlier.

Estimation Models

In this study, the three key metrics of stall, piloting variables (V,,, AoA), and aero-
dynamic performance (lift, drag) are estimated via three distinct neural networks. By
decomposing the discrete binary vs. continuous variables (i.e.: stall vs. others) and by
grouping similar physics interpretations (i.e.: (V,, and AoA) vs. (lift and drag)) this
multi-model approach is found to produce greater performance than a single model. In
both training and inference tasks, the model inputs consist solely of the PZT and SG
data, where all sensors are concatenated to produce synchronized 13-channel data. The
outputs, on the other hand, are different for each model, and they are set to the related
estimation metric(s) of the corresponding model (stall, (V,,, AoA) or (lift, drag)).

The wind tunnel data is split threefold into training, validation, and test sets. Training
and validation sets consist of the data collected in the model training campaign phase
of wind tunnel experiments, shown in Figure {] (a). The specific data that go into the
training and validation sets are determined by performing a randomized 90% / 10% split
on each flight condition in the training campaign. This process ensured that the training
and validation data sets are unbiased in terms of flight condition homogeneity as well as



the timing of the data points. On the other hand, the test dataset contains the 7-minute
continuous data collected in the run #1 of dynamic test campaign (Figure ] (b)). This
split is aimed to generate two model performance evaluation bases, one with the static
condition data (validation set data) and one with dynamic condition data that represents
the actual use case of the system (test set data).

RESULTS

Among the metrics estimated by iFlyNet, stall is clearly the simplest flight state to
identify, as the elevated vibration is a readily observable feature of the stall condition.
In the task even a logistic regression gives nearly 90% accuracy on the validation data,
a shallow 1-dimensional Convolutional Neural Network (1D-CNN) model of 2 layers
with binary cross-entropy loss is found to demonstrate near-perfect performance on both
training (99.4%) and validation (99.6%) sets as shown in Figure [5(a).

Prediction of (V,,, AoA) and (lift/drag), on the other hand, is much more involved.
Different from the stall classification, these tasks are posed as a regression problem to
estimate the real-valued number via a mean-squared loss as follows:

samples

MSEpiloting = Z (Voo,z - @)2 + (AOAz - m>2 (1)
=1
samples
MSEaero = Z (Lz - Ll)2 + (Dl - D2)2 (2)

i=1

In these tasks, the aforementioned shallow 1D-CNN architecture is underfitted to
the data, presumably due to the few numbers of parameters in the shallow model being
unable to model the continuous nature of the estimation task and the rich estimation
space effectively. In order to provide greater descriptive power, 1D implementation of
the ResNet (1D-ResNet) [[11] architecture is employed as the alternative scheme, and the
outcomes are significantly improved. Tracking the MSE variables as the performance
indicators, the (V,,, AoA) and (lift, drag) models achieved an aggregated average of
0.07 and 0.02 on the training set, 0.18 and 0.04 on the validation set, and 0.75 and 0.11
on the dynamic test set, respectively, as shown in Figure [5] (a, b). These results suggest
near-perfect modeling of the training data while indicating less favorable performance in
the dynamic conditions on piloting variables (V,, AoA). However, we remark that these
figures with less than one unit of aggregated average error in the estimation of piloting
variables are still very close to the ground truth measurements.

For visualizing the estimated flight state in comparison with the ground truth mea-
surements a user-facing graphical interface is developed. This user interface, a snapshot
of it shown in Figure[6] is developed to run dynamic run campaigns and is composed of
three main elements. On the top left, a video stream from a camera overlooking the UAV
is displayed. The background of this picture also contains a screen with real-time updat-
ing measurements made by built-in wind tunnel sensors. On the top right, a graphic with
the estimated state of the UAV is presented. Similar to the measurements, it displays
real-time updating estimations of the stall condition and (V,,, AoA) variables. Finally,
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Figure 5. Model performance metrics during training. (a) Stall training, (b) (V,, AoA)
training, and (c) (lift/drag) training.
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Figure 6. A snapshot from the flight visualization graphical interface.

on the bottom row, four line charts are drawn. These plots show the time history evo-
lution of measured and predicted values of V., AoA, lift, and drag as the wind tunnel
experiment progresses.

CONCLUSIONS

This study presents a modeling approach and a full-scale application example for es-
timating key flight metrics of aircraft from the mechanical behavior of one of its wings.
The technique, inspired by the flight awareness paradigm of avians, hypothesizes that
a granular understanding of an aircraft wing’s mechanical response can enable infer-
ring global-level flight aerodynamics via a data-driven model. Traditional physics-based
techniques are shown to produce such a relationship, however, current work is the first
in literature, to our knowledge, that performs this at near real-time speeds and from a
physical sensing system.

In the presented application, the technique is demonstrated on a medium-altitude



close-range UAV placed in a subsonic wind tunnel. The combined static and dynamic
response that represents the wing’s mechanics is collected via a sensor network that
distributes a set of PZTs and SGs at strategic locations on one of the wings of this
UAV. A family of 1D-CNN-based models is found to provide a high level of estimation
performance while satisfying real-time computation speeds. The high accuracy levels
obtained illustrate the applicability of the proposed technique as an alternative flight
instrumentation paradigm that can improve the safety and efficiency of air vehicles.
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