
Exploring the Potential of Transfer Learning
Applications for Structural Damage
Classification

BURAK DURAN and SAEED EFTEKHAR AZAM

ABSTRACT

Structural Health Monitoring (SHM) is essential for ensuring the safety and
maintaining the functionality of structures and infrastructure systems, and Machine
Learning (ML) techniques have shown great potential in rendering SHM as an
automated process. However, unlike many other application areas of ML, when dealing
with infrastructure SHM, there is little to no data available from damaged states to be
used for ML training. To cope with this issue, a typical Finite Element Model (FEM) of
a representative bridge beam structure is used for generating a damaged dataset.
Secondly, creating a generalized network that can successfully work and perform a
classification task for a variable set of structures seems to be one of the biggest
challenges in the field of structural damage detection. In this work, the capability of
Transfer Learning (TL) via Feature Extraction (FE) and Joint Training (JT) in
generalizing the network is explored. Modeling uncertainties for supervised damage
classification can be mitigated by utilizing a Deep Neural Network (DNN) comprised
of Fully Connected (FC) and Convolutional (CONV) layers. In this regard, FEMs of
three simply-supported beam structures with varying lengths were constructed, and
acceleration time-history data was obtained from the interior nodes under the applied
load history at the midpoint. The damage states were represented by the change in
flexural stiffness within a range from 10% to 90%. Subsequently, the potential
knowledge transfer was successfully implemented from the source domain to the target
domains via TL and JT. Then, the proposed two-dimensional (2D) CNN network was
tested with a target dataset that was not included in the training from another beam with
a different length. The results indicate that FEMs could generate numerous source
domains to achieve a generalized model even with including uncertainties.

Burak Duran, Department of Civil and Environmental Engineering, University of New
Hampshire, Durham, NH 03824, US
Saeed Eftekhar Azam, Department of Civil and Environmental Engineering, University of
New Hampshire, Durham, NH 03824, US

INTRODUCTION

Infrastructure such as bridges serves an important role in facilitating transportation,
services, and connecting communities. These structures are subjected to numerous
environmental factors and dynamic loading conditions, which can result in gradual
deterioration or sudden failure at the local or global scale. Therefore, the damage
detection framework of bridges is of utmost importance to ensure their structural
integrity, prevent catastrophic failures, and take appropriate action to prioritize
maintenance and repair efforts. In this regard, Structural Health Monitoring (SHM) has
emerged as a valuable tool enabling continuous monitoring of bridge behavior and
offering early warning signs of potential damage. SHM contains the deployment of
sensors to collect data on structural responses, including vibrations, strains, and
displacements. By analyzing this data, the health of the bridge can be assessed, and any
indicators of damage or deterioration can be detected. Conventional vibration-based
techniques have been widely employed in SHM, relying on the analysis of the frequency
characteristics to identify changes indicative of damage. However, these techniques
might have certain limitations in terms of accuracy, sensitivity, the time-consuming
model generating, calibration, and feature extraction procedure, and the ability to detect
subtle damage that might not be visible to the naked eye [1].

The integration of Machine Learning (ML) techniques in SHM has the potential to
revolutionize damage detection in bridges. ML algorithms can automatically learn from
the vast amount of sensor data and identify patterns. ML methods can be divided into
two categories; Unsupervised and Supervised. Unsupervised methods, in which the
labeled datasets are not available, play a role in detecting the existence of damage based
on statistical analysis and novelty detection. On the other hand, Supervised methods
utilize labeled datasets to train algorithms, enabling them to classify data and make
predictions. Using this technique not only offers to identify the occurrence of damage
but also makes it possible to gain deeper insights into its characteristics and location.
Overall, this integration of SHM into ML frameworks allows for more accurate, robust,
fast, and computationally efficient damage detection in bridges.

 In traditional ML approaches, classification tasks heavily rely on the user’s input
and are often performed using time-consuming feature extraction techniques. Contrary,
Deep Learning (DL) methods enhance the autonomy of the process since it has the
ability to automatically learn feature representations from raw data, eliminating the need
for manual feature extraction steps required in traditional ML methods [2]. One highly
effective category of DL methods is Convolutional Neural Networks (CNNs).

Within the scope of this study, a potential application of TL via feature extraction
(FE) and joint training (JT) by integrating SHM into DL by investigating a
representative simply-supported bridge beam is presented. To that end, a finite element
model (FEM) of the beam was subjected to white-noise load time history, and
acceleration data was obtained from the interior nodes of the beam. Then, the obtained
structural response was transformed into gray-scale images, and a two-dimensional
(2D) CNN was developed. A successful CNN implementation through FE and JT
showed the potential of knowledge transfer in the field of structural damage
identification and classification framework.

DEEP NEURAL NETWORK (DNN)

Deep neural networks (DNNs) are a type of artificial neural network (ANN) that
have gained significant attention in recent years due to their noticeable performance in
various fields including SHM. It consists of several layers of interconnected neurons
between the input and output layers (see Figure 1).

Figure 1. Layered representation of an example DNN

In a DNN, each neuron is represented as a mathematical function that takes input
from the previous ones and produces an output. A layered configuration of DNNs allows
for hierarchical feature extraction, where each layer and neuron learns progressively
more abstract representations of the input data. Convolutional neural networks (CNNs)
are a specialized type of DNN that is particularly designed for processing grid-like data
such as images or time series. Rather than traditional ML techniques, CNNs
automatically extract the relevant features and handle the spatial information directly
from raw image pixels due to their unique architectural design. Thus, they can be
adapted and generalized to different datasets and are well-suited for tasks such as image
classification, object recognition, etc. A typical CNN is composed of convolutional
(CONV), pooling (POOL), and fully connected (FC) layers. In a sequentially layered
configuration, a CNN involves an optimization algorithm called backpropagation,
which is a gradient descent algorithm and iteratively adjusts the network’s parameters
to minimize the difference between the predicted outputs and the ground truth labels.
During the training procedure, the network updates the weights, which are the
connections between the neurons, based on the computed errors. In conclusion, CNNs
eliminate the need for manual feature extraction and offer an automated way for several
tasks.

METHODOLOGY

A finite element model of an S3x5.7 steel section was generated using the
OpenSeesPy [3] platform. The area and moment of inertia of the given section used in
the model are 1077.42 mm2 and 1.05x106 mm4, respectively.

Input layer

Hidden layers

Output layer

Figure 2. Representation of the beam in FEM.

Then, the modulus of elasticity is 200x103 N/mm2 and the density of the steel
material is 7670 kg/m3. As can be seen in Figure 2, the beam was discretized into ten
individuals to accommodate time-history loading. A total of 1000 random Gaussian-
based load time-history profiles were applied vertically at the mid-span.

Each excitation consisted of 1000 data points with a time step of 5x10-3 s, and the
total duration of the analysis is 5 seconds per loading scenario. Acceleration outputs
were recorded at each interior node of interest, represented by green solid circles in
Figure 2. Each recorded data sample has a size of 1000 rows and 9 columns, capturing
the response of the beam under the applied loading conditions. It is assumed that the
damage occurs close to the point where the load is applied. Based on this assumption,
the flexural stiffness (EI) of the fifth beam (Member-5) was sequentially reduced by
10% from a completely healthy case. Overall, there are nine unhealthy and one healthy
labels. TABLE I provides an overview of the reduction percentage of EI and
corresponding damage labels ranging from D1, representing the heaviest damage, to
UN, which is the undamaged case. The EI reduction ratio gradually decreases from D1
to UN, indicating a decrease in the severity of the damage.

After simulating the structural damage by the variation in flexural stiffness and the
recording of acceleration responses at the interior nodes, each corresponding non-image
(tabular) data was converted into grayscale images to feed the proposed CNN. The aim
of this process is to leverage the classification ability of CNNs while maximizing
modeling efficiency and create computationally inexpensive way when dealing with
large amount of sensor data [4].

TABLE I. LABEL INFORMATION

Labels
Reduction of EI

 (%)
EI value used in the analysis

(%)
Label explanation

D1 90 10 Damage level - 1

D2 80 20 Damage level - 2

D3 70 30 Damage level - 3

D4 60 40 Damage level - 4

D5 50 50 Damage level - 5

D6 40 60 Damage level - 6

D7 30 70 Damage level - 7

D8 20 80 Damage level - 8

D9 10 90 Damage level - 9

UN 0 100 No damage

1 2 3 4 5 6 7 8 9 10

Length
S3x5.7

Apply load time-history

To facilitate this transformation, the numerical data were first normalized to
ensure their suitability for image conversion. The normalization step is required to
produce enhanced results and mitigate convergence issues for ML algorithms by
establishing a standardized and higher-resolution scale. This process involved
determining the global maxima and minima across the entire dataset and then applying
Eq. 1 to achieve normalization.

𝑧௜ =
𝑥௜ − min (𝑥)

max(𝑥) − min (𝑥)
 (1)

In the above formulation, 𝑧௜ is the normalized acceleration, 𝑥௜ denotes the original

acceleration, and min(𝑥) and max(𝑥) are the minimum and maximum acceleration
readings of acceleration recorded in the entire dataset. After undergoing the
transformation procedure, the acceleration outputs were rescaled to a range between 0
and 1, where 0 refers to the maximum negative acceleration and 1 represents the
maximum positive value. An example of the input image extracted from the mid-portion
of the highest level of damage (D1) is illustrated in Figure 3. It is apparent that the image
depicts a discernible variation in pixel intensity, ranging from white to black,
corresponding to the numerical values contained within each pixel. This grayscale
representation effectively visualizes the spatial distribution and intensity of the
structural response, providing valuable insights into the nature and extent of the
observed damage.

Figure 3. Monochromic grayscale example of the input image (Label is D1)

TRANSFER LEARNING AND CNN IMPLEMENTATION

In the scope of structural damage identification and classification framework, three
beam cases were developed with varying length parameters. A beam whose length is

1000 mm (Beam A) was assumed to be a source domain. On the other hand, two
additional datasets for the length of 1100 mm (Beam B) and 1200 mm (Beam C) were
created for the target domains. Moreover, a dataset with a length of 1050 mm was
generated for only testing purposes (Beam D), which was not included in any training.
The overall objective is to transfer the knowledge gained from one task and apply it to
another related or distinct one. In this way, TL via feature extraction (FE) includes
utilizing pre-trained models that are trained on large datasets and learning general
features of the data. Without a need for developing an entirely new network for each
new task, TL focuses on accelerating the learning process, improving model
performance, and overcoming limitations such as the need for large labeled datasets. In
the FE method, all layers before the dense layers were frozen while the classification
layers at the end were untouched to extract the meaningful features. Additionally, in this
study, joint training (JT), also known as multi-task learning, is delved into. This
technique involves training a single model to perform multiple interrelated tasks
simultaneously. It functions as an upper bound, indicating the maximum level of
performance attainable [5]. Rather than training separate models for each task, the
model is jointly trained on a combined dataset that incorporates examples from all tasks.
The shared representation layers in the model capture common features across tasks,
allowing for knowledge sharing and transfer between tasks. It is important to underline
that JT does not explicitly utilize a pre-trained model, yet it still benefits from the idea
of knowledge transfer and leveraging shared representations. Thus, JT can be
considered as a form of TL, specifically within the realm of multi-task learning.

Both FE and JT techniques employed the same CNN architecture with consistent
hyperparameters (Figure 4). Following a hyperparameter tuning process, an optimal 2D
CNN architecture included four convolutional layers (CONV), two pooling layers
(POOL), three fully connected (FC), and a dense SoftMax output layer. The CONV
layers utilized Rectified Linear Unit (ReLU) activation function to introduce non-
linearity into the network. The number of filers in the CONV layers followed an
ascending order of 32, 64, 128, and 256. At the end of the network, three FC-dense
layers were included, each comprising 64 neurons. Moreover, the pooling operation was
chosen to be maximum and the filter size in the network was selected to be 3x3. Adam
optimization with a learning rate of 10-4 was used. To mitigate the potential overfitting
issue, L1 regularization with a regularization factor of 0.001 was added to the objective
function. The network was trained for a total of 300 epochs, which was determined to
be the optimal number of training iterations for the proposed network.

The feature extraction method in this study can be summarized as follows;
knowledge transfer was initially implemented from Beam-A, which is a pre-trained
model (Model-1), to Beam-B through feature extraction (Model-2). Subsequently, the
model was re-trained with Beam-C to finalize the network (Model-3). All datasets were
split into 70% training, 15% testing, and 15% validation. Throughout this procedure,
the hyperparameters remained consistent, while the dense layers were used to extract
the features. On the other hand, the joint training approach involved collecting data
samples from each dataset. The same split ratios were maintained, resulting in a random
selection of 70% from each training set, 15% from both validation and testing sets.
Consequently, the JT network had a total of 15,000 images for training and 3,000 images
for the validation and testing datasets.

Figure 4. Applied CNN architecture for both FE and JT

RESULTS

Before implementing feature extraction, Model-1 achieved 100% accuracy for 10-
label multi-class classification. At this step, when the model was tested with Beam B,
Beam C, and Beam D data, the accuracy results are 0.35, 0.14, 0.33 without re-training.
It is important to note that Beam D was not included in any training and can be assumed
to be a dataset coming from the field experiment. Then, the TL via FE was applied, and
re-training was performed by feeding the CNN with the Beam B dataset. Following this,
Model-2 attained 0.28 and 0.61 accuracy for Beam C and Beam D, respectively.
Afterward, Model-2 was re-trained using the Beam C dataset with the same technique.
Model-3 reached 0.35 accuracy for Beam D. As expected, Model-2 achieved better
accuracy for the target domain of Beam D since the length parameter is the midpoint of
Beam A and Beam B. In case of using FE, the length of the beams might cause a shift
in the distribution and degrades the performance of the model.

TABLE II. JOINT TRAINING - CLASSIFICATION REPORT FOR TESTING OF BEAM D
 Precision Recall f1-score Support

D1 1.00 1.00 1.00 150
D2 1.00 1.00 1.00 150
D3 0.98 1.00 0.99 150
D4 0.99 0.98 0.98 150
D5 0.96 0.99 0.97 150
D6 0.93 0.96 0.94 150
D7 0.89 0.93 0.91 150
D8 0.84 0.89 0.86 150
D9 0.66 0.83 0.73 150
UN 1.00 0.57 0.73 150

Accuracy 0.91 1500
Macro avg. 0.92 0.91 0.91 1500

Weighted avg. 0.92 0.91 0.91 1500

UN

D1

D2

D3

CONV-1 POOL-1CONV-2 POOL-2CONV-3 CONV-4
INPUT

FC-1

Output

FC-2 FC-3

D4

D5

D6

D7

D8

D9

The training and testing accuracy attained 1.0 in the JT task. Then, the model was
tested with the unseen Beam D data. The results indicate that JT reached 0.92 to predict
the Beam D classes successfully. The classification report is presented in TABLE II. It
provides an overview of the performance of the classification model. As can be seen,
the precision scores for the highest damage levels reached 1.0, it slightly goes down
when the damage level gradually decreases to D9. This is because the difference in the
pixel intensities is severe for the heavily-damaged cases.

CONCLUSIONS

This study is dedicated to investigating the potential applications of knowledge
transfer in the context of detecting and classifying structural damage, particularly for
bridge infrastructure. To that end, representative simply-supported bridge beams of
various lengths were modeled in the OpenSees. Then, a Gaussian load time history was
subsequently applied vertically to the beam at its midpoint, and the resulting
acceleration outputs were recorded at each interior node. Through this process, for each
loading case and damage scenario, 1000x9 tabular data entries were obtained. The
damage was induced in Member-5 by gradually decreasing the flexural stiffness from a
fully healthy case to a heavily damaged state with 10% of the original EI. In this way,
ten labels were achieved with a total of 10,000 datasets per beam. Following linear FEM
analysis, each of the tabular data was transformed into gray-scale images to be used as
inputs for the proposed CNN, benefiting from a high capability of the classification task.
Two forms of TL were presented in this study; TL via feature extraction and JT. The
TL via feature extraction approach involved utilizing pre-trained models to extract
relevant features from the input data, which were then fed into the CNN. On the other
hand, JT involved training a single model to simultaneously handle multiple tasks. The
results indicate that the JT outperforms FE. The possible reason why the accuracy goes
down in FE as the training progressively occurs from source to target domains might be
the non-homogenous distribution of the data and catastrophic forgetting. However, JT
does not directly suffer from those issues and it can handle the task successfully. In FE
method, fine-tuning and replay-based continual learning methods could be the ways to
achieve better results. For generalization purpose and avoiding overfitting, JT seems to
be a better option.

REFERENCES

1. C. S. N. Pathirage, J. Li, L. Li, H. Hao, W. Liu, and P. Ni, “Structural damage identification based

on autoencoder neural networks and deep learning,” Engineering Structures, vol. 172, pp. 13–28,
Oct. 2018, doi: 10.1016/j.engstruct.2018.05.109.

2. D. Hajializadeh, “Deep learning-based indirect bridge damage identification system,” Structural
Health Monitoring, vol. 22, no. 2, pp. 897–912, Mar. 2023, doi: 10.1177/14759217221087147.

3. M. Zhu, F. McKenna, and M. H. Scott, “OpenSeesPy: Python library for the OpenSees finite element
framework,” SoftwareX, vol. 7, pp. 6–11, Jan. 2018, doi: 10.1016/j.softx.2017.10.009.

4. H. Khodabandehlou, G. Pekcan, and M. S. Fadali, “Vibration-based structural condition assessment
using convolution neural networks,” Structural Control and Health Monitoring, vol. 26, no. 2, p.
e2308, 2019, doi: 10.1002/stc.2308.

5. B. Bagus and A. Gepperth, “An Investigation of Replay-based Approaches for Continual Learning,”
in 2021 International Joint Conference on Neural Networks (IJCNN), Jul. 2021, pp. 1–9. doi:
10.1109/IJCNN52387.2021.9533862.

