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ABSTRACT 
 

Leveraging the powerful capabilities of deep learning (DL) techniques, the DL-driven 
tuple recognition approach has successfully addressed numerous challenges in SHM by 
associating tuples with structural patterns. However, the robustness and generalizability 
of the model are significantly compromised due to limitations in their designated feature 
extraction strategies, network architectures, and supervision learning schemas. To 
address these issues, this study proposes a novel General Tuple Recognition Framework 
(GTRF) that supports supervised (SL), unsupervised (UL), and semi-supervised 
learning (SSL) paradigms. The present article provides a detailed explanation of the 
mechanism and workflow of the proposed GTRF. Equipped with sophisticated 
networks and innovative components, the GTRF demonstrates competence in various 
tuple recognition tasks across different learning paradigms. The validation experiments 
conducted in the field of SHM include vibration SL-recognition of a prototype 
skyscraper, damage UL-detection of a laboratory RC beam, and condition SSL- 
assessment of a full-scale building model. To ensure the adaptability of diverse tuples, 
two commonly used data forms, namely acceleration measurements and piezoelectric 
signals, are employed in the experimental validations. The comprehensive results 
confirm the effectiveness and adaptability of the proposed GTRF. The flexible paradigm 
specialization, broad application, and potential for optimization make the proposed 
GTRF framework a promising prototype for bridging the gap between DL algorithm 
fusion and model integration across different learning paradigms. 

 
 

INTRODUCTION 
 

In recent decades, deep learning-based structural health monitoring (SHM) has 
gained significant attention, to which considerable efforts of scientific research and 
engineering applications have been dedicated [1-5]. Generally, these researches focus 
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on establishing a mapping relationship between specific structural patterns (such as 
damage index and condition scenarios) and the corresponding measurement, utilizing a 
collected dataset from various deployed sensors, such as mechanical accelerators [6] 
and piezoelectric transducers [7]. Notably, Avci et al. conducted a comprehensive 
review of advanced deep learning (DL) algorithms for vibration-based damage 
detection, focusing on DL learning algorithms and their specific application scenarios 
[8]. However, they did not demonstrate a general DL framework capable of adapting to 
different supervision paradigms. This highlights the scarcity of studies dedicated to 
exploring a multi-paradigm framework. Developing a generalized DL framework that 
can adapt to SL, UL, and SSL regimes simultaneously is both appealing and challenging. 

Activated by powerful capabilities of deep learning (DL) techniques, the DL-driven 
tuple recognition regime has facilitated plenty of problems settlement in SHM practice 
by mapping tuples with structural patterns. A multitude of algorithms and models have 
been proposed and successfully implemented, demonstrating exceptional performance 
surpassing human expertise in handling diverse data sources. However, these DL-based 
methods often face challenges due to fixed feature extraction approaches and limited 
sample label involvement. As a result, they can only address specific data forms under 
certain supervision patterns, compromising model robustness and generalization. 
Furthermore, the intricate design of DL network architectures hinders easy 
transferability to other tasks, reducing the overall value of the models in terms of 
transferability and generality. Therefore, there is an urgent need to investigate a DL 
framework that can be more universally applied. 

To address this issue, this study introduces a generalized deep learning framework, 
named GTRF, for tuple recognition in SL, SSL, and UL patterns. In proposed 
framework, a novel approach for feature extraction is proposed, leveraging 
representation learning through deep autoencoders (DAE). This enables the extraction 
of sensitive features from diverse data sources, regardless of their type or length. To 
adapt the recognition framework to different supervision patterns, a novel pseudo-label 
propagation method is also presented, employing an optimized fuzzy c-means cluster 
(FCM) algorithm. The article provides a detailed explanation of the mechanism and 
workflow of the proposed GTRF. 
 
 
PROPOSED FRAMEWORK 
 
 

The present study introduces a novel feature extraction method within a generalized 
framework, utilizing signal representation learning through deep autoencoder (DAE). 
Building upon this method, a feature extractor is developed by quantifying the 
reconstruction error of the DAE. This process enables the definition and calculation of 
a set of pattern-sensitive features (PSF). The framework incorporates three distinct 
channels to cater to different recognition patterns: supervised classification pattern using 
linear classifiers, unsupervised fuzzy clustering pattern employing an optimized fuzzy-
C-means (FCM) algorithm within the UL paradigm, and semi-supervised label 
propagation using an optimized FCM algorithm within the SSL paradigm. Figure 1 
illustrates the workflow of the proposed generalized framework, GTRF, with detailed 
architecture and mechanisms explained subsequently. 
 



 
 

 
 

 
 

Figure 1. Workflow of proposed general framework GTRF 
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Figure 2. Schematic architecture of DAE 
 
 
Representative Detector 

  
In the broad family of DL techniques, DAE is a special type of self-supervised 

learning neural network regarded as a unique representation detector trained to duplicate 
its input to output as much as possible [9]. In a DAE, the encoder block initially 
transforms the input signal into a latent representation of lower dimensionality, while 
the decoder subsequently reconstructs it back into an output with the same dimension 
as the input, as shown in Figure 2. 

While training a DAE with specific type of signals, the trained model will store the 
latent representative knowledge associated with designated structural patterns. Thus, 
when fed with signals affiliated to different patterns, the reconstruction performance of 
DAE shall exhibit corresponding discrepancies related to the divergence between 
testing signals to the trained one. Therewith, the kernel of building the representative 
detector is to quantify the reconstruction errors, which can be promising indicators to 
characterize the in-depth features of signals corresponding to different patterns. 
 
Feature Extractor 
 

In the proposed framework, the kernel strategy of feature extraction is to quantify the 
reconstruction error by DAE. Thus, it is natural to come up with such classical and 
readily indicators for evaluation. In this study, six renowned indicators are defined as 
PSFs, including mean square error (MSE), original-to-reconstructed signal ratio 
(ORSR), Correlation coefficients (CORR), cosine similarity (COSS), the root mean 
square error (RMSE) and the ratio of the sum of squares (RSS). The mathematic 
calculations are expressed as follows: 
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where n denotes the dimension of signals, x and y denotes the original and reconstructed 
sequences, respectively.  

Hereby, a series of extracted PSFs is obtained, which can be allocated for downstream 
learning with multi-level supervision patterns. Without loss of generality, other modern 
and performing indices can be also exploited and allocated for error measurement here, 
which remains flexibility for potential designated specification. 
 
Multi-paradigm Representor 
 

Processed with the representative detector and feature extractor in the framework, the 
raw high-dimensional signals can be transferred into low-dimensional PSFs, which are 
beneficial for the downstream classification or clustering implementation. 

Specifically, while solving the issue of SL classification, it can be readily performed 
via those mature classification algorithms, such as naïve Bayes (NB) [10], nearest 
neighbors (KN) [11], logistic regression (LR) [12], support vector machine (SVC) [13], 
decision trees (DT) [14], random forest (RF) [15], AdaBoost (AB) [16], gradient 
boosting (GB) [17] and neural perceptron network (MLP) [18]. With mature 
development and readily employment, those SL classifiers can be easily introduced for 
the classification tasks, relevant demonstration of which can be found in one our 
previous work [3]. 

Particularly, while switching the recognition paradigm into UL or SSL, an optimized 
clustering strategy based on the typical and renowned fuzzy C-means algorithm (FCM) 
[19] propounded in another work [20] of our team is introduced into the present 
framework. Having the basic truth that those points close to corresponding centroids are 
generally assigned a more reliable pseudo-label, while some inevitable fake labels 
among those pseudo-labels such as some outliers will come up occasionally. Thus, only 
the points with top 75% closest to centroids are selected to train the classifier in a 
supervised way. This kind of “filtering mechanism” is also applied into the UL 
clustering process in the framework. More details regarding the optimized clustering 
approach can be found on our related work [20]. 

 

 
Figure 3. Optimized FCM algorithms for pseudo-label propagation [20] 
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Hereto, the methodological philosophy and translating mechanism of proposed 
framework have been thoroughly showcased and explained. Following are some 
experimental validations for verification.  
 
 
EXPERIMENTAL VALIDATIONS 
 
 

In this study, a series of multi-level experimental tasks were carried out to verify the 
effectiveness and potential superiority of the proposed GTRF in the field of SHM 
practice. These tasks encompassed various aspects, such as vibration recognition of a 
real-life skyscraper (representing the SL paradigm) [21], damage detection of a 
laboratory RC beam (representing the UL paradigm) [22], and condition assessment of 
a full-scale shear-wall structure (representing the SSL paradigm) [20]. To exhibit the 
adaptability of diverse tuples, i.e., diverse data form of SHM, two commonly utilized 
data formats: acceleration measurement and piezoelectric signals are involved in the 
validations. 

Particularly, since the essence kernel of present study is to establish a general DL 
framework which can be readily switched to adapt to diverse learning paradigms, the 
major contribution and novelties cast in the sophisticated integration and regulation of 
all the involved translating mechanism. It is deemed to be reasonable to allocate the 
three individual works guided by the working principle of proposed framework 
conducted previously by our research team for experimental validations. Thus, this 
section will merely make a summarizing description of the three validating cases, as 
shown in TABLE I, while detail information and demonstrations can be referred to the 
reference [20-22], respectively. 

Notably, to evaluate the prediction performance of validations corresponding to three 
learning paradigms, the prediction accuracy is utilized as the metric of overall models. 
The results turned to be 0.95, 0.84, and 0.86 associated to SL, UL, and SSL learning 
paradigms, respectively, suggesting the powerful capability and adaptability of 
proposed framework. 
 
 
CONCLUSIONS 
 
 

In this study, a new General Tuple Recognition Framework (GTRF) adapted to SL, 
UL, and SSL is developed to address DL-driven task implementations in SHM practice. 
The study provides detailed explanations of the advanced network architecture and 
innovative features incorporated into the framework. Three representative tasks in SHM 
practice were conducted for comprehensive validations, the results of which confirmed 
the convective performance of the proposed GTRF.  
 

 
TABLE I. SUMMARY OF EXPERIMENTAL VALIDATIONS 

Paradigm Objective Task Tuple Accuracy 
SL In-service skyscraper Vibration recognition acceleration 0.95 
UL Laboratory RC beam Damage detection piezoelectric 0.84 
SSL Full-scale shear-wall structure Condition assessment acceleration 0.86 



 
 

Due to the flexible paradigm specialization, wide-ranging applicability, and 
opportunities for optimization, the proposed GTRF framework demonstrates promising 
potential as a prototype to bridge the gap between DL algorithm fusion and model 
integration across various learning paradigms.  
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