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ABSTRACT 
 

Many of the high speed and high-performance naval vessels use aluminum as a 
primary structural material. Welded aluminum stiffened structures are very common in 
these vehicles, but even with much research, performance of these structures under 
fatigue is not completely known. Many experimental investigations on similar 
structures were performed over the past two decades. Meanwhile, the desire for a 
comprehensive naval structural health monitoring (SHM) system is receiving greater 
interest. Recently, with re-advent of machine learning and artificial intelligence (AI) for 
structural digital twin, older experimental sensor dataset from crack growth in welded 
aluminum structure could be better utilized and exploited for crack predictions with few 
interventions from the sensor data. In this study, piezoelectric wafer active sensors are 
utilized for SHM of a welded aluminum structure and sensor data were collected at 
multiple frequencies from multiple specimens. Crack initiation to growth pattern were 
also recorded. Through machine learning, sensor data from four specimens were 
exploited to develop an AI algorithm for predicting the crack growth. It is shown that 
ML and AI frameworks are suitable for ship structure digital twin applications. 

 
 

INTRODUCTION 

Aluminum welded joins are frequently used in the design and fabrication of marine and 
naval vessels. High speed and high-performance vessels require light weight hulls to 
meet operational requirements, and thus aluminum is a natural material choice for these 
ships. Although much research has been dedicated to understanding aluminum behavior 
under fatigue, aluminum sensitization, fatigue performance and strength of aluminum 
welded structures are still unknown. A primary concern in aluminum structures is the 
heat-affected zone (HAZ) induced during the welding process [1]. 
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These structures are susceptible to fatigue cracks which may grow continuously 
under operational loading. Wide uncertainty in crack paths and crack lengths over a 
broad range of environmental fatigue loading make it extremely difficult to predict crack 
length. Thus, real time structural health monitoring (SHM) [2-3] is one approach for 
long term monitoring of welded aluminum structures. Structural details can be 
instrumented with piezoelectric transducers to probe the material state in real time via a 
range of passive and active SHM.  This article is primarily focused on Guided wave 
based active mode of SHM. Typically, the transducers are installed and ultrasonic 
Guided waves are collected through an active SHM system. Factors such as operational 
environmental conditions, transient material properties (aluminum sensitization), and 
inconsistent behavior of the installed sensors sometime makes the interpretation of the 
crack length from the sensor data difficult.  However, advances in machine learning 
(ML) based data modeling and implementation through an artificial intelligence (AI) 
framework for crack prediction of welded aluminum joints would be a valuable means 
to enhance the usage of SHM for complex structures.   

Research described in this paper utilized several representative welded aluminum 
test specimens. These specimens were instrumented with Guided wave SHM system 
using four surface mounted piezoelectric sensors. Data from one of these specimens 
were analyzed and presented in ref. [4]. In this study, a total of six of these specimens 
were analyzed, for which a complete set of Guided waves SHM data were available.   

 
 

MATERIALS AND SPECIMENS  
 

Detailed descriptions of the specimens can be found in [4], however, a few details are 
reiterated herein. In this study, the test structures are aluminum fatigue specimens 
constructed with typical Navy ship design details (Figure 1). All connections are 
welded.  The base plate and bulkhead material consist of 3/8 and 1/4 inch thick 5083-
H116 aluminum, while the stiffeners are made of extruded 6061-T6 aluminum.  Thick 
end plates are welded to the specimen to allow for placement of the plate in a tensile 
fatigue machine.  Using the fatigue machine, different loading profiles are applied to 
groups of specimens in an effort to characterize the S/N curve for this type of plate 
intersection.  The results from monitoring one of these stiffened plate specimens are 
presented in this paper.  Sixteen strain gauges were applied to the specimen to assist in 
balancing the structure in the fatigue machine, as well as monitor the loading through 
the fatigue process. Specimen name and details are shown in Table I.  

 
TABLE I: SPECIMEN NAMES AND IDENTIFICATION 

Item No Specimen no. 
1 MAHI Spec 1 
2 MAHI Spec 2 
3 MAHI Spec 4 
4 MAHI Spec 8 
5 MAHI Spec 12 
6 MAHI Spec 22 

 
 

 



 
EXPERIMENTAL DESIGN 

 
A 550-kip MTS machine was used for the specimens under investigation. Fatigue 
loading with 5 Hz loading rate, constant amplitude and R = -1 was applied to the 
specimens. The specimens were subjected to cyclic loading until an onset of crack is 
detected visually. Initiation of a crack in a specimen is considered failure of the 
specimen. However, the cracks were allowed to grow further by continuing the cyclic 
loading. The loading continued until the crack propagated through one side of the plate.     

Four piezoelectric wafer active sensors (PZTS) were bonded to the surface of the 
base plate (Figure 1).  The average diameter of the sensors was 0.5-inch. PZTS were 
0.02 inch thick made of 851 materials. PZTS were supplied by APC, International and 
bonded to the plate with Vishay Micro-Measurements M-Bond 200 adhesive [4].  
Acellent Technologies Inc. Smart Suitcase Lamb wave data acquisition system was 
used [4]. Designations of PZTS are shown in Figure 1. All possible combinations of 
paths were utilized to acquire the data. A Krohn-Hite 7602M wideband amplifier is used 
to amplify the excitation signals from the DAQ system [4]. A typical tone-burst consists 
of 5 cycles of a Hanning-windowed sine wave that was used as an actuation signal. 
20,000 data points at a rate of 25 mega samples per second were recorded with 20 
averages to increase signal to noise ratio. 

The machine was stopped at a regular interval to collect the data from the sensors. 
A detailed protocol can be found in ref [4]. Guided wave signals were collected at 50, 
75, 100, and 150 kHz.  Different specimens, when inspected visually, show the sign of 
initiation of crack after a certain number of fatigue cycles. For example, visual 
indication of onset of crack in specimen 4 shows after 167,300 cycles. The crack was 
located in the heat-affected zone adjacent to the main plate butt weld.  Similar was 
observed for all other specimens.  

 
 

 
 

Figure 1.  a) The front side of a specimen (Specimen No. 4) is shown, and the four 
piezoelectric discs bonded to the plate are labeled. b) Crack growth in Specimen No. 8 

c) Crack growth in Specimen no. 2  
 
   



 
 

Figure 2: A schematic showing the philosophy adopted for the data analysis 
through feature extraction, model selection, model optimization, verification and 

model deployment.  
 
 
OVERALL ML PROCESS FOR DATA ANALYSIS 
 
To maximize understanding from the data sets, it was not possible to perform the manual 
analysis. Hence, an automated data analysis process was adopted. Figure 2 shows the 
overall flow chart of how the data analysis and machine learning methods were adopted 
to develop the final algorithm, model training, and predictive capability.   

The first step was to extract the features from the Guided wave signal that are 
relevant to quantify the damage (crack length) size. Guided wave signal consists of 
several wave modes with different velocities at different frequencies. The underlying 
physics must be captured through the features to be extracted. Feature extraction is the 
step where long 20,000 data points signals are reduced to a few features that facilitate 
fast and efficient interpretation of the data. To explore these features a software portal 
was built in MATLAB. A class called ‘GuidedWaveFeatures’ was created with multiple 
internal functions that are responsible for calculating specific features. Automated 
signal analysis objects were created from the class to generate multiple features. The 
following features extraction algorithms were used. A total of 38 features were 
extracted, including principal components, nonlinear parameters, nonlocal parameters, 
frequency content and amplitudes, Kurtosis, average and moving average signal energy 
to name a few. Hence, each Guided wave signal of 20,000 data points along any path 
was reduced to only 38 data points.  

Figure 3 shows the software portal that was built to perform this analysis. The 
software portal is capable of loading full datasets captured during the fatigue 
experiments on all six specimens. The user is able to select any specific specimen, select 
individual excitation frequencies, and automatically have visuals of all the signals 
collected along the four sensor paths. Please note that in this analysis only four paths 
were considered, those between sensors 1 and 2, 3 and 4, 1 and 3, and 2 and 4. After 
frequency selections, users may explore the signals from the Baseline Data and Fatigue 



Data dropdown menu. Next, a Fatigue Analysis is performed. Clicking the ‘Load All 
Data Fatigue Analysis’ button, the feature extraction algorithms are initiated. Giving 
equal weightage, a Damage Index (DI) is formulated using the following equation.       

 

�� = �∑ (� × �∗)��
���                                                  (1) 

 
DI was calculated over the entire fatigue test for each specimen at all frequencies 
mentioned before. An evolution of the Damage index in specimen 4 at 100 kHz is shown 
in Figure 3. File 12, which is a representative of the data after 110k loading cycles, 
shows significant increase in the DI as an indication of onset of crack. Please note that 
the crack was not visible on the surface until 167,300 cycles.     
 
 
BUILDING MACHINE LEARNING MODEL  
 
Using the tool above, six sets of data where prepare to initiate the Machine Learning of 
damage index and crack length. Table II shows an example of a feature table created for 
each specimen. Table II shows the data from specimen 1.  
 

    

 
 

Figure 3: Data analysis toolbox for feature extraction and calculating damage 
index. 

 



 
 

TABLE II: DAMAGE INDEX AND CRACK LENGTH DATA 
 

Cycle (k) 
DI 

100 kHz 
DI 

150 kHz 
DI 

75 kHz  
DI 

50 kHz 
Crack Length 

(in.)  
Temp 

(oF) 

0 1.61E-06 2.48E-06 1.57E-06 1.57E-06 0 79 

0 0.000294 5.56E-06 4.55E-05 4.55E-05 0 79 

68 0.000428 4.89E-05 6.55E-04 0.000655 0 84 

68 0.000627 9.92E-05 6.63E-04 0.000663 0 84 

110 0.001002 0.000106 6.71E-04 0.000671 1 86 

110 0.001007 0.000114 7.59E-04 0.000759 1 86 

128 0.001011 0.000327 2.97E-03 0.002967 1.1 82 

128 0.002475 0.000402 0.002968 0.002968 1.1 82 

135 0.003371 0.000447 0.002968 0.002968 1.25 80 

135 0.003549 0.000464 0.002968 0.002968 1.25 80 

154 0.003627 0.000479 0.003154 0.003154 2.24 80 

154 0.003744 0.000706 0.003298 0.003298 2.24 80 

195 0.003781 0.000781 0.003315 0.003315 3.75 80 

195 0.003783 0.000782 0.003336 0.003336 3.75 80 

216 0.003784 0.000784 0.003563 0.003563 4.87 80 

216 0.005386 0.00081 0.003571 0.003571 4.87 80 

228 0.005443 0.000897 0.003579 0.003579 5.50 80 

228 0.005494 0.000912 0.008145 0.008145 5.50 80 

228 0.005745 0.000917 0.008198 0.008198 5.50 80 

228 0.006456 0.000926 0.008255 0.008255 5.50 80 

 
To train the ML algorithm, four sets of such data were used where the DI data at 

different frequencies were the inputs, and the crack length data were the output. Before 
creating the model, all data were scaled to themselves. That means the data from each 
specimen were scaled individually. Following the steps shown in Fig. 2, different 
models were developed. An Artificial Neural Network (ANN) model was found to be 
most suitable with the least error. A four-layer dense network with RELU activation 
was created sequentially in Python employing Keras. ‘adam’ optimizer and ‘mse’ loss 
methods were used. The best optimized model was found when the four sequential 
layers 38, 76, 38 and 16 nodes were used. A 500 epoch loss curve is shown in Fig. 4. 
Mean square error with respect to the iteration number is shown.  

After the model is developed, a specimen used in the training set was chosen to 
determine if the model correctly predicted the damage index. As there were other 
specimens with various different scaled damage index values used to develop the model, 
prediction was not hundred percent accurate but ranged between 96% – 98%. After the 
model verification for validation, specimen test data were fed into the predictive model 
without true crack length data. Different trainings were performed with various 
combinations of 4 and 2 specimens where 4 specimens were used for training and 2 
specimens were used for testing the model.  

 



 
Figure 4: Mean square error with respect to iteration number. 

 
 

For example, when Specimen nos. 1, 2, 4 and 22 were used as the training 
specimens, Specimen no. 8 and 12 were used for testing the prediction. Figure 5 shows 
the outcome of all the result when 55 different cases with different specimen and at 
different loading cycle was tested for crack size. The figure shows the actual crack size 
and the predicted crack sizes in inch.     

 
 

CONCLUSION 
 

A machine learning approach is demonstrated using fatigue test data for future 
prediction of crack growth using Guided wave sensor data collected online. The 
approach is useful for the development of digital twins of naval structures with in situ 
SHM. In the future, multiple datasets including in situ SHM, visual or remote 
inspection, nondestructive evaluation (NDE) data, and more can be fused for a 
comprehensive understanding of platform condition. 
 

 

 
Figure 5: A summary of prediction results 



      
Online sensor data can be utilized for real time updating of digital twins. At that 

scale, it would be necessary to employ ML and AI for real time prediction of material 
state from the sensor data. Although Guided wave sensors data are used in this study, 
future efforts will focus on data fusion between these local sensors and global health 
monitoring data using accelerometers, strain gauges, etc. to understand ship response to 
operational (wave) conditions.  As the use of local, crack monitoring SHM grows, it 
will not be possible to perform all possible scenarios of experiments in the laboratory 
and train the model. At that point of time, it will be beneficial to employ fully verified 
and validated computational model [5-6] for data generation that could be used in 
training the ML models.         
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