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ABSTRACT

Many of the high speed and high-performance naval vessels use aluminum as a
primary structural material. Welded aluminum stiffened structures are very common in
these vehicles, but even with much research, performance of these structures under
fatigue is not completely known. Many experimental investigations on similar
structures were performed over the past two decades. Meanwhile, the desire for a
comprehensive naval structural health monitoring (SHM) system is receiving greater
interest. Recently, with re-advent of machine learning and artificial intelligence (Al) for
structural digital twin, older experimental sensor dataset from crack growth in welded
aluminum structure could be better utilized and exploited for crack predictions with few
interventions from the sensor data. In this study, piezoelectric wafer active sensors are
utilized for SHM of a welded aluminum structure and sensor data were collected at
multiple frequencies from multiple specimens. Crack initiation to growth pattern were
also recorded. Through machine learning, sensor data from four specimens were
exploited to develop an Al algorithm for predicting the crack growth. It is shown that
ML and Al frameworks are suitable for ship structure digital twin applications.

INTRODUCTION

Aluminum welded joins are frequently used in the design and fabrication of marine and
naval vessels. High speed and high-performance vessels require light weight hulls to
meet operational requirements, and thus aluminum is a natural material choice for these
ships. Although much research has been dedicated to understanding aluminum behavior
under fatigue, aluminum sensitization, fatigue performance and strength of aluminum
welded structures are still unknown. A primary concern in aluminum structures is the
heat-affected zone (HAZ) induced during the welding process [1].
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These structures are susceptible to fatigue cracks which may grow continuously
under operational loading. Wide uncertainty in crack paths and crack lengths over a
broad range of environmental fatigue loading make it extremely difficult to predict crack
length. Thus, real time structural health monitoring (SHM) [2-3] is one approach for
long term monitoring of welded aluminum structures. Structural details can be
instrumented with piezoelectric transducers to probe the material state in real time via a
range of passive and active SHM. This article is primarily focused on Guided wave
based active mode of SHM. Typically, the transducers are installed and ultrasonic
Guided waves are collected through an active SHM system. Factors such as operational
environmental conditions, transient material properties (aluminum sensitization), and
inconsistent behavior of the installed sensors sometime makes the interpretation of the
crack length from the sensor data difficult. However, advances in machine learning
(ML) based data modeling and implementation through an artificial intelligence (Al)
framework for crack prediction of welded aluminum joints would be a valuable means
to enhance the usage of SHM for complex structures.

Research described in this paper utilized several representative welded aluminum
test specimens. These specimens were instrumented with Guided wave SHM system
using four surface mounted piezoelectric sensors. Data from one of these specimens
were analyzed and presented in ref. [4]. In this study, a total of six of these specimens
were analyzed, for which a complete set of Guided waves SHM data were available.

MATERIALS AND SPECIMENS

Detailed descriptions of the specimens can be found in [4], however, a few details are
reiterated herein. In this study, the test structures are aluminum fatigue specimens
constructed with typical Navy ship design details (Figure 1). All connections are
welded. The base plate and bulkhead material consist of 3/8 and 1/4 inch thick 5083-
H116 aluminum, while the stiffeners are made of extruded 6061-T6 aluminum. Thick
end plates are welded to the specimen to allow for placement of the plate in a tensile
fatigue machine. Using the fatigue machine, different loading profiles are applied to
groups of specimens in an effort to characterize the S/N curve for this type of plate
intersection. The results from monitoring one of these stiffened plate specimens are
presented in this paper. Sixteen strain gauges were applied to the specimen to assist in
balancing the structure in the fatigue machine, as well as monitor the loading through
the fatigue process. Specimen name and details are shown in Table I.

TABLE I: SPECIMEN NAMES AND IDENTIFICATION

Item No Specimen no.
1 MAHI Spec 1
2 MAHI Spec 2
3 MAHI Spec 4
4 MAHI Spec 8
5 MAHI Spec 12
6 MAHI Spec 22




EXPERIMENTAL DESIGN

A 550-kip MTS machine was used for the specimens under investigation. Fatigue
loading with 5 Hz loading rate, constant amplitude and R = -1 was applied to the
specimens. The specimens were subjected to cyclic loading until an onset of crack is
detected visually. Initiation of a crack in a specimen is considered failure of the
specimen. However, the cracks were allowed to grow further by continuing the cyclic
loading. The loading continued until the crack propagated through one side of the plate.

Four piezoelectric wafer active sensors (PZTS) were bonded to the surface of the
base plate (Figure 1). The average diameter of the sensors was 0.5-inch. PZTS were
0.02 inch thick made of 851 materials. PZTS were supplied by APC, International and
bonded to the plate with Vishay Micro-Measurements M-Bond 200 adhesive [4].
Acellent Technologies Inc. Smart Suitcase Lamb wave data acquisition system was
used [4]. Designations of PZTS are shown in Figure 1. All possible combinations of
paths were utilized to acquire the data. A Krohn-Hite 7602M wideband amplifier is used
to amplify the excitation signals from the DAQ system [4]. A typical tone-burst consists
of 5 cycles of a Hanning-windowed sine wave that was used as an actuation signal.
20,000 data points at a rate of 25 mega samples per second were recorded with 20
averages to increase signal to noise ratio.

The machine was stopped at a regular interval to collect the data from the sensors.
A detailed protocol can be found in ref [4]. Guided wave signals were collected at 50,
75, 100, and 150 kHz. Different specimens, when inspected visually, show the sign of
initiation of crack after a certain number of fatigue cycles. For example, visual
indication of onset of crack in specimen 4 shows after 167,300 cycles. The crack was
located in the heat-affected zone adjacent to the main plate butt weld. Similar was
observed for all other specimens.
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Figure 1. a) The front side of a specimen (Specimen No. 4) is shown, and the four
piezoelectric discs bonded to the plate are labeled. b) Crack growth in Specimen No. 8
¢) Crack growth in Specimen no. 2
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Figure 2: A schematic showing the philosophy adopted for the data analysis
through feature extraction, model selection, model optimization, verification and
model deployment.

OVERALL ML PROCESS FOR DATA ANALYSIS

To maximize understanding from the data sets, it was not possible to perform the manual
analysis. Hence, an automated data analysis process was adopted. Figure 2 shows the
overall flow chart of how the data analysis and machine learning methods were adopted
to develop the final algorithm, model training, and predictive capability.

The first step was to extract the features from the Guided wave signal that are
relevant to quantify the damage (crack length) size. Guided wave signal consists of
several wave modes with different velocities at different frequencies. The underlying
physics must be captured through the features to be extracted. Feature extraction is the
step where long 20,000 data points signals are reduced to a few features that facilitate
fast and efficient interpretation of the data. To explore these features a software portal
was builtin MATLAB. A class called ‘GuidedWaveFeatures’ was created with multiple
internal functions that are responsible for calculating specific features. Automated
signal analysis objects were created from the class to generate multiple features. The
following features extraction algorithms were used. A total of 38 features were
extracted, including principal components, nonlinear parameters, nonlocal parameters,
frequency content and amplitudes, Kurtosis, average and moving average signal energy
to name a few. Hence, each Guided wave signal of 20,000 data points along any path
was reduced to only 38 data points.

Figure 3 shows the software portal that was built to perform this analysis. The
software portal is capable of loading full datasets captured during the fatigue
experiments on all six specimens. The user is able to select any specific specimen, select
individual excitation frequencies, and automatically have visuals of all the signals
collected along the four sensor paths. Please note that in this analysis only four paths
were considered, those between sensors 1 and 2, 3 and 4, 1 and 3, and 2 and 4. After
frequency selections, users may explore the signals from the Baseline Data and Fatigue



Data dropdown menu. Next, a Fatigue Analysis is performed. Clicking the ‘Load All
Data Fatigue Analysis’ button, the feature extraction algorithms are initiated. Giving
equal weightage, a Damage Index (DI) is formulated using the following equation.

DI = / s (f X f7) 1)

DI was calculated over the entire fatigue test for each specimen at all frequencies
mentioned before. An evolution of the Damage index in specimen 4 at 100 kHz is shown
in Figure 3. File 12, which is a representative of the data after 110k loading cycles,
shows significant increase in the DI as an indication of onset of crack. Please note that
the crack was not visible on the surface until 167,300 cycles.

BUILDING MACHINE LEARNING MODEL

Using the tool above, six sets of data where prepare to initiate the Machine Learning of
damage index and crack length. Table Il shows an example of a feature table created for
each specimen. Table II shows the data from specimen 1.
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Figure 3: Data analysis toolbox for feature extraction and calculating damage
index.



TABLE II: DAMAGE INDEX AND CRACK LENGTH DATA

DI DI DI DI | Crack Length Temp

Cycle (k) 100 kHz | 150 kHz 75 kHz 50 kHz (in.) (°F)
0| 1.61E-06 | 2.48E-06 | 1.57E-06 | 1.57E-06 0 79

0 | 0.000294 | 5.56E-06 | 4.55E-05 | 4.55E-05 0 79
68 | 0.000428 | 4.89E-05 | 6.55E-04 | 0.000655 0 84
68 | 0.000627 | 9.92E-05 | 6.63E-04 | 0.000663 0 84
110 | 0.001002 | 0.000106 | 6.71E-04 | 0.000671 1 86
110 | 0.001007 | 0.000114 | 7.59E-04 | 0.000759 1 86
128 | 0.001011 | 0.000327 | 2.97E-03 | 0.002967 1.1 82
128 | 0.002475 | 0.000402 | 0.002968 | 0.002968 1.1 82
135 | 0.003371 | 0.000447 | 0.002968 | 0.002968 1.25 80
135 | 0.003549 | 0.000464 | 0.002968 | 0.002968 1.25 80
154 | 0.003627 | 0.000479 | 0.003154 | 0.003154 2.24 80
154 | 0.003744 | 0.000706 | 0.003298 | 0.003298 2.24 80
195 | 0.003781 | 0.000781 | 0.003315 | 0.003315 3.75 80
195 | 0.003783 | 0.000782 | 0.003336 | 0.003336 3.75 80
216 | 0.003784 | 0.000784 | 0.003563 | 0.003563 4.87 80
216 | 0.005386 | 0.00081 | 0.003571 | 0.003571 4.87 80
228 | 0.005443 | 0.000897 | 0.003579 | 0.003579 5.50 80
228 | 0.005494 | 0.000912 | 0.008145 | 0.008145 5.50 80
228 | 0.005745 | 0.000917 | 0.008198 | 0.008198 5.50 80
228 | 0.006456 | 0.000926 | 0.008255 | 0.008255 5.50 80

To train the ML algorithm, four sets of such data were used where the DI data at
different frequencies were the inputs, and the crack length data were the output. Before
creating the model, all data were scaled to themselves. That means the data from each
specimen were scaled individually. Following the steps shown in Fig. 2, different
models were developed. An Artificial Neural Network (ANN) model was found to be
most suitable with the least error. A four-layer dense network with RELU activation
was created sequentially in Python employing Keras. ‘adam’ optimizer and ‘mse’ loss
methods were used. The best optimized model was found when the four sequential
layers 38, 76, 38 and 16 nodes were used. A 500 epoch loss curve is shown in Fig. 4.
Mean square error with respect to the iteration number is shown.

After the model is developed, a specimen used in the training set was chosen to
determine if the model correctly predicted the damage index. As there were other
specimens with various different scaled damage index values used to develop the model,
prediction was not hundred percent accurate but ranged between 96% — 98%. After the
model verification for validation, specimen test data were fed into the predictive model
without true crack length data. Different trainings were performed with various
combinations of 4 and 2 specimens where 4 specimens were used for training and 2
specimens were used for testing the model.
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Figure 4: Mean square error with respect to iteration number.

For example, when Specimen nos. 1, 2, 4 and 22 were used as the training
specimens, Specimen no. 8 and 12 were used for testing the prediction. Figure 5 shows
the outcome of all the result when 55 different cases with different specimen and at
different loading cycle was tested for crack size. The figure shows the actual crack size
and the predicted crack sizes in inch.

CONCLUSION

A machine learning approach is demonstrated using fatigue test data for future
prediction of crack growth using Guided wave sensor data collected online. The
approach is useful for the development of digital twins of naval structures with in situ
SHM. In the future, multiple datasets including in situ SHM, visual or remote
inspection, nondestructive evaluation (NDE) data, and more can be fused for a
comprehensive understanding of platform condition.
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Figure 5: A summary of prediction results



Online sensor data can be utilized for real time updating of digital twins. At that
scale, it would be necessary to employ ML and Al for real time prediction of material
state from the sensor data. Although Guided wave sensors data are used in this study,
future efforts will focus on data fusion between these local sensors and global health
monitoring data using accelerometers, strain gauges, etc. to understand ship response to
operational (wave) conditions. As the use of local, crack monitoring SHM grows, it
will not be possible to perform all possible scenarios of experiments in the laboratory
and train the model. At that point of time, it will be beneficial to employ fully verified
and validated computational model [5-6] for data generation that could be used in
training the ML models.
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