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ABSTRACT

Visual inspection is predominantly used to evaluate the state of civil structures,
but recent developments in unmanned aerial vehicles (UAVs) and artificial intelligence
have increased the speed, safety, and reliability of the inspection process. In this study,
we develop a semantic segmentation network based on vision transformers and
Laplacian pyramids scaling networks for efficiently parsing high-resolution visual
inspection images. The massive amounts of collected high-resolution images during
inspections can slow down the investigation efforts. And while there have been
extensive studies dedicated to the use of deep learning models for damage segmentation,
processing high-resolution visual data can pose major computational difficulties.
Traditionally, images are either uniformly downsampled or partitioned to cope with
computational demands. However, the input is at risk of losing local fine details, such
as thin cracks, or global contextual information. Inspired by super-resolution
architectures, our vision transformer model learns to resize high-resolution images and
masks to retain both the valuable local features and the global semantics without
sacrificing computational efficiency. The proposed framework has been evaluated
through comprehensive experiments on a dataset of bridge inspection report images
using multiple metrics for pixel-wise materials detection.

INTRODUCTION

The recent breakthroughs in computer hardware and sensing technology have provided
tools that facilitate the collection of high-quality visual media during structural
inspections. The large amount of obtained footage, however, is often examined
manually by the inspectors for structural defects which could be challenging to perform
if a large urban area was affected by a major hazard. To address this problem, many
studies focused on developing an automated visual inspection algorithm usually
involving morphological operations, edge detection algorithms, filtering, binarization,
and other image processing techniques [1, 2]. However, in recent years, significant
progress has been made in the field with the advent of artificial intelligence-based
computer vision algorithms. These techniques can leverage large datasets to learn
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meaningful features enabling more accurate and efficient defect detections when
compared to conventional visual inspection methods.

Recent advances in deep learning have, without a doubt, impacted structural health
monitoring (SHM) [3]. Many methodologies have been proposed over the past few
years that utilize deep and complex neural network architectures for automating
structural condition assessment procedures including convolutional neural networks
(CNNs) [4], generative adversarial networks [5], autoencoder neural networks [6],
recurrent neural networks [7, 8], and hybrid deep learning models,[9]. It is hence no
surprise that deep learning has also revolutionized automated visual inspection, enabling
more accurate and efficient defects detections in many applications. There are two main
directions in developing vision-based SHM: component detection and damage
detection. Detection of structural and non-structural components and materials often has
the purpose of accelerating the inspection process such as providing guidance to the
inspectors or the deployed UAVs. Multiple methods were proposed in the past using
various techniques including object detection [10, 11], and semantic segmentation [12,
13]. The bulk of the vision-based SHM research, however, was dedicated to structural
damage detection including concrete cracks [13, 14], pavement cracks [15], and
building facades [16]. Multi-task methods combining multiple visual inspection tasks
were also proposed [17].

It is common to adopt established deep learning algorithms for developing vision-
based SHM using transfer learning. But it is worth noting that structural inspections, a
procedure of high-stakes nature, often requires high precision and accuracy achieved by
using input data of relatively high resolution. In addition, many visual inspection tasks
require real-time inference which can, for example, be used for UAV navigation. On
the other hand, state-of-the-art computer vision models, such as vision transformers
(VIiT), are becoming increasingly expensive in terms of computational demands which
makes the use of high-resolution data even more challenging. Two models were
proposed recently to address these challenges by using different strategies for handling
high-resolution images efficiently [18]. However, a single approach was not successful
in addressing the needs of different visual inspection tasks.

In this study, we develop a unified framework for high-resolution visual inspection
that can strike a balance between prediction quality and computational efficiency.
Uniform downsizing of images, which is commonly performed when resources are
limited, can distort the original image and cause a loss of fine details. We propose Swin
transformer segmentation with trainable resizers (SwinTR), a transformer-based
segmentation model paired with cascaded sub-pixel convolution scaling networks.
SwinTR brings the ViT technology into the field of vision-based SHM with
insignificant increase in computational costs. We evaluate the framework on the
Structural Materials Segmentation dataset, but it can be applied to other visual
inspection tasks with minor adjustments.

ARCHITECTURE DESIGN

Many off-the-shelf semantic segmentation models are optimized for low to medium-
resolution images. Using a state-of-the-art segmentation model on high-resolution
images could be met with GPU-memory constraints making it highly inefficient. To
handle high-resolution images, a common practice is to uniformly downsample the



images before feeding them into the segmentation model to cater to the available
computational resources. However, this process often impacts the segmentation
performance especially near object boundaries. Another way to handle this, especially
for crack damage detection, is to dissect the image into smaller parts in a process known
as patch cropping at the expense of losing global semantic information. Instead, and
inspired by super-resolution research, we propose two neural networks that can allow
using a low-resolution segmentation model on high-resolution datasets with a relatively
low increase in computational demands.

Our SwinTR network includes two main encoder-decoder stages: the trainable
resizers in the outer stage, and an internal, low-resolution Swin Transformer-based U-
Net++ segmentation model (Figure 2). We find this design to have high computational
and memory efficiency compared to using high-resolution segmentation models. For
example, we estimated an approximate 8.4 GB of GPU memory demand to pass a single
1920x1080 image through a U-Net model compared to 1.6 GB needed using our
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Figure 2. SwinTR architecture (c: channels, n: classes, ST-i: Swin Transformer block, D-i,j: decoder
block, Conv: 2D convolution, BN: batch normalization, ReLU: rectified linear unit, LN: Layer
normalization, MLP: multi-layer perceptron, SW/W-MSA: regular and shifted windowed multi-head
self-attention, LE: linear embedding, PM: patch merging [19]).



The concept behind the use of the trainable resizers (Figure 3) is that, unlike uniform
sampling where all pixels have equal importance, some pixels matter more than others.
The downsampler and upsampler networks, therefore, learn to sample valuable pixels
more frequently in the resizing process. The two symmetric networks are inspired by
deep Laplacian pyramid networks which were used in the past for super-resolution and
image generation methods [20, 21]. The upsampling network, called Laplacian Subpixel
Convolutional Network (LapSCN), contains a feature extraction branch and a mask
reconstruction branch. The downsampling network, called Laplacian Desubpixel
Convolutional Network (LapDCN) replaces the reconstruction branch with an image
deconstruction branch. The two networks can progressively rescale images or masks
based on a cascade of subpixel convolutional modules. At each level, the data is fed into
the feature extraction branch which is responsible for learning the higher resolution
residuals. The residuals can then be used to fine-tune the resized data in the
deconstruction/reconstruction branch through addition. The result from the
deconstruction or reconstruction branch can be either used as the resized output or fed
into the feature branch for an additional stage of scaling.

The feature extraction branch in LapSCN contains subpixel convolutional blocks
[22] where each block provides residuals for masks upsampled by a factor of two. The
final pixel shuffle layer reorganizes the low-resolution feature maps to form two-times
upscaled feature maps. The desubpixel convolutional blocks, which are used for feature
extraction in LapDCN, begins instead with a pixel unshuffle layer, a reverse operation
to pixel shuffle. These layers can drastically reduce the information loss during
downsampling as pixels are rearranged into the channels’ axis.

The internal segmentation model uses a state-of-the-art Swin Transformer backbone
[19] with a U-Net++ decoder [23]. Transformers, which were originally used in natural
language processing [24], have been dominating many computer vision benchmarks in
recent years including ImageNet and ADE20k [25-27]. It is, however, not straightforward
to use transformer networks as encoders in a U-Net-like segmentation architecture.
Therefore, Swin Transformer relies on patch merging operations to provide hierarchical
feature maps at each stage of the network. We have fitted the decoder to a Swin
Transformer Base (Swin-B) model that is pretrained on ImageNet with an input/output
resolution of 224x224.

CASE STUDY: MATERIAL SEGMENTATION DATASET

The material segmentation dataset is a publicly available dataset containing 3,817
images extracted from the Virginia Department of Transportation bridge inspection
reports [28] with pixel-level annotation of three structural inspection materials:
concrete, steel, and metal decking. The images resolution varies from a low of 256x237
to a high of 5184x3456, making it a suitable test bench for our framework. The dataset
is splitinto 3,436 samples for training and 381 samples for testing by its original authors.
We further set aside 352 samples from the training dataset to be used for validation
during network training (approximately 10% of the training set).

The models were built and trained using the PyTorch library [29] and a workstation
equipped with Intel® Core 19-13900k CPU and an Nvidia RTX 4090 GPU. Multiple
data augmentation techniques were carried out during training including a variety of
random color manipulation and image transforms to help reduce training overfitting.



We used the focal loss [30] as the cost function and Adam as the optimizer [31] in
addition to learning rate schedulers having maximum and minimum learning rates of
1E-4 and 1E-6, respectively. All models were trained for 50 epochs and the selected
checkpoint corresponds to weights resulting in the maximum intersection-over-union
(loU) of the validation set.
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Figure 3. Downsampling and upsampling network architectures (c: channels, n: classes, Conv: 2D
convolution, BN: batch normalization, ReLU: rectified linear unit).

RESULTS

Five segmentation models with different input sizes are compared using the material
segmentation dataset based on four metrics: precision, recall, F1-score, and loU. All
models share the same internal segmentation model based on Swin Transformer. The
internal SwinTR model is trained for images and masks of sizes 224x224. The uniform
SwinTR attaches interpolation-based upsampler and downsampler to the internal model
downstream and upstream which allows it to handle images and masks four times the
size (896%896). SwinTR 2x and SwinTR 4x are two SwinTR variants that elevate the
sizes of the segmentation model by two and four times, respectively. The average results
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of all these five models are shown in Tables | and Il. Overall, using the trainable resizers
has allowed for a slight increase in performance in all metrics with SwinTR 2x
achieving the best results. Using non-trainable resizers, however, slightly deteriorated
the model performance when compared to the low-resolution segmentation model. It is
worth noting that the differences in performance are subtle and, for this dataset, the use
of interpolation-based resizers should not drastically impact the prediction results.

Figures 4 and 5 show the output of LapDCN and LapSCN alongside the outputs of
non-trainable resizers. In Figure 4, it is observed that uniformly downsampling the
image can distort the edges which can be valuable for defining the boundaries of the
segmentation object. These boundaries and other important details are better retained in
the LapDCN output in a low-resolution form. A similar conclusion can be made by
upscaling the masks (Figure 5). LapSCN can learn to provide a super-resolution version
of the supplied masks by the internal segmentation model compared to the interpolation-
based upsampler. In addition, the boundaries of the segmentation objects show clear
artifacts compared to the smoothed boundaries of LapSCN masks.

TABLE |. TESTING PERFORMANCE METRICS (AVERAGE)

Size Precision Recall F1-score loU

(%) (%) (%) (%)
Internal SwinTR 224 92.65 92.09 92.35 86.05
Uniform SwinTR 4x 896 92.45 91.90 92.14 85.72
SWinTR 2x 448 92.94 92.02 92.44 86.25
SWinTR 4x 896 92.78 91.99 92.35 86.07

TABLE Il. CLASS-WISE INTERSECTION-OVER-UNION RESULTS

Background Concrete Steel Metal decking
Internal SwinTR 74.97 86.46 94.15 88.63
Uniform SwinTR 4x 74.28 86.56 94.06 87.97
SwinTR 2x 74.26 87.14 94.49 89.09
SwWinTR 4x 74.57 86.64 94.20 88.87

a) original image b) LapDCN downsampled image ¢) Uniformly downsampled image

Figure 4. Different image downsamplers results.



a) original (ground truth) mask b) LapSCN upsampled mask ¢) Nearest Neighbor upsampled mask

Figure 5. Different mask upsamplers results.

CONCLUSIONS

As more progress is made in hardware and sensing technology, engineering inspectors
gain access to an increasing amount of high-dimensional data that would benefit from
the advances in artificial intelligence. Fast and efficient visual inspection is preferred
for real-time applications, but the resource demands of state-of-the-art vision
transformer models are exponentially increasing. We proposed a high-resolution visual
inspection framework that encompasses a low-resolution transformer segmentation
network and two trainable resizers inspired by efficient subpixel convolution and
Laplacian pyramid networks. By testing our framework on the material segmentation
dataset, we found that while there were gains in accuracy and loU compared to the
model with interpolation-based resizers, the increase is practically insignificant. We also
found that the use of non-trainable downsamplers and upsamplers can impact the object
boundaries negatively, which can be valuable for certain tasks. Future research will
include testing the framework on tasks that are more sensitive to image resolution, such
as crack segmentation.
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