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ABSTRACT

Different materials, including wood, have been tested using the contact Ultrasonic
Testing (UT) technique. The time and velocity of the ultrasonic wave in a wood section
have traditionally been monitored and correlated with wood quality. This practice, how-
ever, has not yielded satisfactory results, prompting researchers to develop new strategies
to address the issue. In this study, the primary objective is to employ convolutional neu-
ral networks (CNN) to assess wood quality using the results of contact ultrasonic testing.
To this end, 2D CNN models are employed to train on labeled ultrasonic signals as the
training set. The developed models are thus set to solve supervised classification prob-
lems based on data gathered from testing specimens with various health conditions. The
tested specimens are two types of wood with and without natural imperfections. There-
fore, the size and shape of damage are different across specimens-billets harvested from
trees at two sites in NSW and WA, Australia. This study aims to visualize and investigate
the properties of the features extracted by the inner layers of the developed CNN mod-
els. This way, an unsupervised strategy can be devised to solve the clustering problem
of woods based on their health condition.

INTRODUCTION

Various steps involved in modern Fault Detection and Diagnosis (FDD) systems in-
clude (1) representing the knowledge embedded in a system, (2) adapting tools to acquire
and process data, (3) classifying systems based on their health status, and (4) making de-
cisions regarding maintenance [1]. Wood products are one of the systems traditionally
monitored for decay through visual inspection. In this way, any external evidence of de-
cay in a tree was sought. The most evident sign of this type of decay includes wounds on
the trunk of a tree caused by the self-pruning process. Therefore, novel non-destructive
techniques can greatly benefit the mechanized harvesting industry, as knot clusters on a
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tree trunk can compromise the quality of wood products [2].

The mechanized harvesting industry relies heavily on wood quality assessment [3].
The presence of clusters of knots on a tree trunk can compromise the quality of wood
products [2]. Therefore, novel non-destructive techniques can be of great advantage to
this industry.

Ultrasonic tomography has been demonstrated effective for monitoring the quality
of standing trees [4]. Several features from ultrasonic testing results, including the wave
velocity and time of flight, correlate with the geometry of the defect in the wood sec-
tion. It was also discovered that any defect could attenuate the ultrasonic wave veloc-
ity and increase damping [S]. More advanced techniques exploit signal processing to
derive more descriptive features that can characterize defects in wood sections. For in-
stance, Mousavi et al. utilized the Empirical Mode Decomposition (EMD) algorithm
to decompose an ultrasonic wave into its constituent modes. They demonstrated that
the maximum eigenvalue of the constructed covariance matrix, obtained from the de-
composition results, can be used to characterize imperfections in the wood, particularly
hardwoods [6].

Machine learning algorithms have been widely used to classify Ultrasonic test re-
sults. Krajnc et al. developed binary logistic regression on ultrasound velocity and damp-
ing to predict the internal quality of stating trees [5]. Mousavi et al. developed a more
advanced time-frequency feature extraction algorithm using the Variational Mode De-
composition (VMD) to be further used to classify wooden sections based on their health
state using various machine learning models [7, 8]. Fathi et al. developed a machine-
learning model to predict the modulus of elasticity (MOE) and rupture (MOR) of wood
with varying moisture content (MC) using the guided Lamb wave technique [9]. Nasir
et al. constructed decision tree models to identify the MOE and MOR of UV-degraded
wooden samples [10].

The present work demonstrates employing a two-dimensional CNN network for
feature extraction and solving the classification of woods based on their health state.
This way, the contact—ultrasonic technique is demonstrated to be useful for identifying
healthy standing trees. To this end, two types of billets harvested from trees at different
sites in two Australian states, i.e., WA and NSW, are studied.

PROBLEM STATEMENT

The problem of standing tree classification based on their health status, originally
presented in [11], is investigated in this paper. Several billets harvested from trees in
two Australian states, i.e., New South Wales (NSW) and Western Australia (WA), were
selected for investigation. Several types of Eucalyptus species were studied, including
Eucalyptus Pilularis (Blackbutt), Eucalyptus Marginata (Jarrah), and Eucalyptus Punc-
tata (Grey gum). An ultrasound device, i.e., Pundit PL-200 [11], was employed to test
the billets in several randomly selected directions. The billets were visually inspected
and classified as either “intact” or “defective.” Subsequently, the ultrasound data was fed
into a two-dimensional (2D) Convolutional Neural Network (CNN) to address a classi-
fication problem within a 5-fold classification scheme.

Table I provides specific details about the tested types of wood and the corresponding en-



TABLE I: TYPE OF STUDIED WOOD AT DIFFERENT SITES AND THE METEOROLOGICAL
CONDITIONS UPON TESTING [11].

Species State Site Temperature (°C) | Humidity (%)
Jarrah WA Collie 5.1 90
Blackbutt & Greygum | NSW | Coffs Harbour 10 90

TABLE II: THE SPECIFICATIONS OF THE TEST SET-UP USING PUNDIT PL200 ULTRASONIC
TESTING DEVICE. TF: TRANSMITTED FREQUENCY; PRF: PULSE REPETITION FREQUENCY;
SF: SAMPLING FREQUENCY; CG: COUPLANT GEL.

TF 54 kHz

PRF SHz

SF 10 MHz

CG | Proceq Ultraschall-Koppelpaste

vironmental conditions at the testing sites. Table II outlines the specifications of the testing
procedure. A transducer operating at 54 kHz was employed to emit a sinc-like probing P-wave
(compression wave) with a pulse repetition frequency (PRF) of 5 Hz. The receiver captured the
transmitted and modulated ultrasonic waves due to their interaction with irregularities within the
wood at a sampling frequency of 10 MHz.

Table III presents the number of ultrasonic tests for billets harvested at different sites.

TWO-DIMENSIONAL CONVOLUTIONAL NEURAL NETWORK

The architecture of the constructed 2D CNN is depicted in Figure 1. The deep learning model
has several layers, as outlined below:

* The input layer: This layer defines the input image size to be fed into the 2D network. The
input image size is 110 x 72 pixels with a single channel. To obtain this, the Ultrasound
signals are reshaped into matrices of the shape 110 x 72.

* Convolution layer: This is a convolutional layer with 3 x 3 filters with “same” padding.
This means that the output feature map will be the same size as the input.

* ReLUI layer: The next layer is a rectified linear unit (ReL.U)-an activation layer that
introduces nonlinearity to the output of the convolutional layer.

* Max-pooling layer: This layer performs max-pooling with a 3 x 3 window and a stride of
1.

* ReLU?2 layer: Another ReL.U activation layer.

* Fully-connected layer: This fully connected-layer has two neurons. This layer takes
the output from the previous layer and applies a linear transformation to generate a 2-
dimensional output.

» Softmax layer: This layer applies the softmax activation function to normalize the output
values to a probability distribution.

* (Classification layer: This is the final layer of the network and it performs the classification
task. It uses the cross-entropy loss function for training the network.



TABLE III: THE TOTAL NUMBER OF ULTRASONIC TESTS CONDUCTED ON BILLETS HAR-
VESTED FROM VARIOUS SITES (SHOWN AS “TESTS @ BILLETS”).

Condition WA NSW
Intact 838 @37 | 213 @7
Defective | 897 @ 37 | 617 @ 28

Convolution layer
Input layer Y Max Pooling layer ReLU2 layer

3x3
110 x 79 x 1) (3x3) ReLU] layer (3 @ Stride 1)
Softmax layer
Fully connected Classification
layer (2 nodes) layer
=S > |11 >4 »> B » +>

Figure 1. The architecture of the constructed 2D CNN.

The network is trained using stochastic gradient descent with momentum (SGD optimizer)-a
technique that aids in expediting the convergence of gradient vectors by directing them towards
the correct directions [12]. This approach facilitates faster convergence during the training pro-
cess. The training options encompass a learning rate of 1e-5, which is scheduled to drop by a
factor of 0.2 after every 5 epochs. The training process is limited to a maximum of 50 epochs.

RESULT AND DISCUSSIONS

Table IV displays the classification report obtained from 5-fold cross-validation for the train-
ing 2D-CNN models on various data sets. The data was divided into five folds, with the model
being trained on four different combinations of the folds while testing on the remaining fold.
Further, the Precision, Recall, and F1 scores obtained across different folds were averaged, and
the mean and standard deviation of the results are presented as . + o, where u and o represent
respectively the mean and standard deviation of the reported metrics across different folds. The
obtained results for each case are discussed in this section.

Based on the classification results obtained from the 2D-CNN models trained on different
folds of the WA billets, the following conclusions can be drawn: The proposed 2D-CNN archi-
tecture shows consistent performance across the different folds. This is reflected by the relatively
small standard deviations obtained for the accuracy, precision, recall, and F1 scores evaluated
across various folds. The model achieves high precision scores for training and test sets with
an average value of about 95% and a small standard deviation of less than 1% across different
folds. This suggests that the model has a low false positive rate and effectively identifies positive
instances. The consistent results obtained from the training and test sets also demonstrate the
model’s generalizability. The model also demonstrates high average recall scores of 96.6% and
95.6% for the training and test sets, respectively. Although a slightly bigger standard deviation
of 3.3% occurs for the test set across different folds—compared to the standard deviation of 1.6%
for the training sets—the results are within an acceptable range. This indicates that the model has



TABLE IV: THE 5-FOLD CROSS-VALIDATION CLASSIFICATION REPORT OF THE TRAINED

2D-CNN MODELS FOR VARIOUS TRAINING AND TEST SETS.

Train
Accuracy (%) | Precision Recall F1
WA 95.48+1.77 95.2+0.9 | 96.6+1.6 | 95.840.7
NSW 99.61+0.19 100+0 99.8+0.4 1000
Mixed | 91.07£1.59 |912+1.3]932+1.7|922+0.6
Test
Accuracy (%) | Precision Recall F1
WA 94.814+2.12 95.04+0.8 | 95.64+3.3 | 95.8+1.1
NSW 99.64+0.24 99.8+0.4 | 99.8404 10040
Mixed | 90.64+1.64 | 908 +1.8[93.0+1.9|922+1.0

a low false negative rate and can effectively capture many positive instances. The F1 score—the
harmonic mean of the precision and recall-has also shown consistent values across the training
and test sets with a high average value of 95.8% for both cases. This is while the standard devia-
tion is as small as 0.7% for training and 1.1% for the test. These scores indicate a good balance
between precision and recall, reflecting the model’s ability to achieve high accuracy while cap-
turing a significant portion of relevant instances. Overall, these results suggest that the CNN
model performs well, indicating its capability to classify instances in both the training and test
sets accurately. The consistent performance across the folds further strengthens the reliability
and generalizability of the model.

The results of the 2D-CNN models trained and tested on NSW samples indicate that the CNN
model performs exceptionally well. The precision, recall, and F1 scores are consistently high
across all folds, with minimal variation. The model achieves perfect or near-perfect performance,
with precision, recall, and F1 scores of almost 100%. The small standard deviations suggest the
model’s performance is stable and reliable. These results indicate that the CNN model is highly
accurate in classifying instances, achieving perfect or almost perfect performance on both the
train and test sets.

The findings from the combined analysis of mixed samples demonstrate lower levels of ac-
curacy in comparison to the individual classification of NSW and WA samples. This observation
suggests combining samples increases the complexity of distinguishing between intact and de-
fective specimens, resulting in classification confusion.

Intermediate features visualization

In this section, we visualize the features extracted from the ReLLU layers of various models
trained on 80% of the WA, NSW, and mixed samples. Subsequently, we employ the models
trained on the WA and NSW samples to visualize the learned features from an example of WA
and NSW signals, respectively (Figures 2 and 3). Furthermore, we utilize the same examples to
visualize the features learned from the model trained on the mixed samples (Figure ??). These
results confirm that the model can acquire distinct features when the samples are combined. The
insights gained from this section can serve as a foundation for future research aiming to develop
a fully unsupervised classification algorithm.
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Figure 2. Visualization of features learned in ReLU layers for an example of WA signal.
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Figure 3. Visualization of features learned in ReLU layers for an example of NSW signal.

CONCLUDING REMARKS

This paper presents a 2D-CNN architecture designed to address the classification problem of
wood samples with internal imperfections obtained from two sites in NSW and WA, Australia.
The results highlight the models’ exceptional performance in accurately classifying the wood
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Figure 4. Visualization of features learned in ReLU layers for an example of NSW and WA samples
using a model trained on mixed samples.

samples harvested from the WA or NSW as intact or defective individually. However, once
the signals are combined, difficulties in sample classification arise. Visualizing features learned
from the ReLU layers in the models reveals that mixing the samples led to acquiring entirely
distinct features. As a result, future work will focus on enhancing either the architectural model
or pre-processing the signals in order to: 1) achieve a higher classification accuracy in mixed
samples and 2) employ the acquired sample representations from supervised models to tackle



unsupervised classification of wood samples based on their quality.
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