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ABSTRACT 

Knowledge of a structure’s physical attributes is critical for analyzing the risks as- 
sociated with natural disasters such as floods and hurricanes. However, collecting these 
data over a wide geographical area is a difficult task because it often requires manual la- 
bor. Even in Louisiana, which is at considerable risk for flood-related natural disasters, 
the state government has sparse structure level data about the composition of building 
type, number of stories, foundation type, foundation height, presence of a basement, and 
presence of a garage, all of which are significant predictors of flood risk in many flood 
risk assessment methods. In this study, an automated model is proposed to predict these 
six attributes by utilizing a data fusion-based methodology. The model extracts feature 
from a building’s Google Street View (GSV) image through a Convolutional Neural Net- 
work (CNN) architecture. Likewise, an Artificial Neural Network (ANN) architecture is 
employed to extract features from community data taken at the census-block-group level. 
Another ANN is used to extract features from structure-level data obtained through a real 
estate database. These three feature streams are then fused and processed with a fusion 
module to predict a building’s attributes needed for flood risk assessment. Through this 
technique, accuracies close to or surpassing 90% are achieved on all five classification 
tasks. Likewise, the Mean Absolute Error (MAE) for foundation height estimation is 
small enough to make usable improvements to flood risk estimates over existing data 
sources and modeling assumptions. Although CNN and ANN models are used in this 
study, the basic framework can be applied with other machine learning models as well, 
if features can be extracted from them. Likewise, all the experiments are performed in 
the context of flood risk assessment in Louisiana. However, the framework can be easily 
extended to other natural disasters and geographical regions. 

 
INTRODUCTION 
 

 

Abhishek Subedi, asubedi@purdue.edu, Lyles School of Civil Engineering, Purdue University 
Mohammad R. Jahanshahi, jahansha@purdue.edu, Associate Professor, Lyles School of Civil 
Engineering and Elmore Family School of Electrical and Computer Engineering (Courtesy), 
Purdue University 
David Johnson, davidjohnson@purdue.edu, Assistant Professor, School of Industrial 
Engineering and Department of Political Science, Purdue University 



Assessing the resilience of a structure against flood damage entails first surveying
its physical attributes – such as foundation type, foundation height, number of stories,
building type, presence of basement, and presence of garage – which are then used as
parameters in flood risk assessment models. However, manual survey of structural at-
tributes can be tedious, resource intensive, and prone to human error. Recently, some
researchers have turned to Artificial Intelligence based methods to automate manual sur-
veys. Almost all these techniques use images or image-related data, either taken at the
street level [1, 2] or from satellites [3, 4]. Techniques such as [5] attempt to directly
predict vulnerability by combining the two imagery sources. There has also been an
effort [2] to incorporate additional information such as the images’ metadata to improve
performance beyond what would otherwise be possible using images alone, but the ad-
ditional information is still the property of the images themselves.

In this study, we go beyond images to predict six building attributes necessary for
flood risk assessment – foundation type, foundation height, building type, number of
stories, presence of basement, presence of garage. Our starting hypothesis is that images
are important but insufficient for structural attribute estimation, and that other kinds
of data about the structure and the neighborhood where the structure is located might
prove equally valuable. We will demonstrate that this is a valid hypothesis using three
heterogeneous data sources and a neural network-based data fusion architecture.

PROPOSED METHOD

As stated in Introduction, the preferred type of data for estimating structural at-
tributes is visual. Therefore, in line with the existing literature, GSV images are used
as one data source in this study. Unlike existing literature, however, we also employ
two additional pieces of information. One of them is information about the census block
group (the second smallest administrative division used by the US Census Bureau, typ-
ically consisting of 250-550 housing units) in which the structure is located. This is
to utilize the correlation between the physical properties of structures that are located
near each other as well as between the structural attributes and the information about
the neighborhood in which the structure is located. From here on, we will refer to
this data as community info. Since the attributes need to be predicted at the structure
level, additional structural characteristics are also used. Contrary to block group level
data, these are fine-grained and directly characterize the structure, rather than a group of
structures. In this study, we refer to these as building info. The specific community info
are as follows: population, population density, housing units, median rent, median age,
households with a mortgage (%), median number of vehicles, median built year, house-
holds, median household size, white-collar workers (%), blue-collar workers (%), hous-
ing CPI, housing expenditure, total expenditure, median household income, population
with bachelor’s degree (%), crime index, air pollution index. Likewise, the building info
are: type of owner (individual or company), exterior surface material, area, tax value,
perimeter, owner-occupied or rented, number of rooms, number of units, construction
frame type.

The high-level overview of the method proposed in this study is illustrated in Fig. 1.
The architectural setup consists of four modules: three of them are ANN-based and one
CNN based. Two ANN modules are used to extract features from community info and



individual info separately, while a CNN is used to extract features from the image. A
sample image and its prediction are also demonstrated. The community and individual
characteristics were obtained from the US Census Bureau’s American community survey
and ATTOM Inc., while street-view images were obtained from Google Inc. Although a
CNN (MobileNet V2 [6]) is used in this study, it can be replaced by any CNN or Trans-
former based architecture as deemed suitable. Another ANN then fuses the information
contained in the three feature branches and predicts the building attributes. These build-
ing attributes go into a flood risk assessment model. After the flood risks of individual
buildings have been determined in a region, a flood risk map is generated, which policy-
makers and homeowners can use for adopting mitigation measures. The possible classes
for the different attributes are as follows – foundation type: slab, beam; building type:
residential, commercial, mobile; number of stories: single, multi; basement’s presence:
present, absent; garage’s presence: present, absent. As can be seen, predicting these five
attributes is a classification problem. Foundation height estimation, however, is a regres-
sion problem, where the predictions can theoretically take any numerical value. In this
study, the attributes are predicted separately in a single-task learning setup but multi-task
learning can be adopted if necessary.

Figure 1. Overview of the proposed method.

RESULTS

Some sample predictions are illustrated in Fig. 2, and the overall performance met-
rics for the different setups are presented in Table I. The datasets for the first five at-
tributes in the table are balanced. Hence accuracy is used as the evaluation metric.
Likewise, foundation height estimation is evaluated using MAE since it is a regression
problem. On 7,500 test images, the accuracy when predicting the type of foundation is
90.20%. Likewise, 91.77% of the 11,250 buildings are classified correctly on the build-
ing type prediction task and 90.21% of the 6,565 buildings are classified correctly on the
number of stories task. Among the 676 buildings in the basement’s presence prediction
task, our method gives correct estimate in 95.56% of the cases, while an equally impres-



Fd.type Bd.type N.Stories P.basement P.garage Fd.height
acc. (%) acc. (%) acc. (%) acc. (%) acc. (%) MAE (m)

N = 7,500 N = 11,250 N = 6,565 N = 676 N = 7,500 N = 2,428

90.20 91.77 90.21 95.56 89.35 0.132

TABLE I. Performance of the data fusion model. MAE = Mean Absolute Error; acc.
= accuracy. Likewise, the number of samples in the test set (support; N) are provided
alongside the attributes.

sive accuracy of 89.35% is observed on 7,500 buildings when predicting the presence
of garage. On arguably the most important attribute relevant for flood risk assessment,
foundation height, we observe an MAE as low as 0.132 m on 2,428 buildings in the test
set. These are useful performances in practical terms and will substantially improve the
flood risk assessment of structures.

CONCLUSION

In this study, the effect of fusing images, census-type information about the neighbor-
hood in which a structure is located, and information about the structure obtained from
a real-estate database is studied in the context of building attribute estimation. Through
experiments on six different building attributes necessary for flood risk estimation, we
demonstrate that fusion of these heterogeneous data types is substantially effective. Be-
yond impressive performance, this method is directly being adopted to predict structural
attributes for around 1.6 million buildings in the state of Louisiana, which is a testament
to its practicality and scalability.

Figure 2. Sample predictions of heterogeneous data fusion. All the classification at-
tributes are predicted correctly. The actual foundation heights are (a) 0.1524 m, (b)
0.4572 m, (c) 0.4572 m, and (d) 0.762 m, which are reasonably close to the estimated
heights.
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