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ABSTRACT 
 

The corrosion of infrastructure and facilities poses a significant challenge for the 
United States Department of Defense (DoD) in terms of cost and military readiness. To 
tackle this challenge, our research introduces a data-driven corrosion segmentation 
method that combines three deep learning-based models and an ensemble learning 
approach for the automatic identification and segmentation of corroded regions within 
high-resolution images. The method involves several stages, such as data annotation, 
preprocessing, augmentation, model implementation, and performance evaluation. The 
deep learning models used include Feature Pyramid Network (FPN) with Residual 
Network (ResNet)-34 encoder, UNet with ResNet-34 encoder, and UNet++ with Visual 
Geometry Group (VGG)-19 encoder. Ensemble learning, a technique that integrates 
these deep learning models, was employed to improve prediction accuracy and overall 
performance. The proposed method is evaluated using both the Dice score and the 
Intersection over Union (IoU) score metrics. Experimental results demonstrate that the 
ensemble learning approach outperforms individual models, achieving a Dice score of 
90.1% and an IoU score of 83.9%. The approach shows promise to automatically detect 
and measure corrosion, which can reduce inspection costs and identify major issues to 
aid in prevention of structural failure. The tool developed in this study will be expanded 
to provide similar capabilities for large-scale civil infrastructure. 

 
 

INTRODUCTION 
 

Mitigating corrosion currently accounts for 40% of the national maintenance 
budget, totaling over $20 billion a year for the military and equally impacting civil 
works infrastructure. Corrosion poses a significant challenge for the U.S. Army Corps 
of Engineers, leading to substantial economic and environmental consequences. 
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It contributes to air and water pollution, soil and vegetation contamination, and 
generates waste, among other issues. Additionally, corroded infrastructure is prone to 
structural failure, resulting in catastrophic disasters and loss of life, as demonstrated by 
incidents such as the collapse of the Morandi bridge in Genoa, Italy and the sinking of 
the Erika ship in Brittany, France. Moreover, corrosion significantly increases 
maintenance expenses and reduces the lifespan of infrastructure. Therefore, early 
detection of corroded areas is crucial for maintaining structural integrity, preventing 
disasters, and minimizing long-term maintenance costs.  

In recent years, there has been a significant increase in publications related to 
automated corrosion detection using machine learning and image-based methods. 
Several studies, including Spencer et al. [1], Flah et al. [2], Jahanshahi et al. [3], and Bai 
et al. [4], have investigated various techniques for automated inspection and structural 
damage detection. These techniques include Convolutional Neural Network (CNN) 
classifiers, Otsu image processing, image registration, morphological image processing, 
edge detection, texture and color analysis, wavelet transform, pattern recognition, image 
classification, object detection, and semantic segmentation. By using these methods, 
researchers have been able to identify different types of damage, such as cracks, 
spalling, and corrosion. While many researchers have used popular CNN networks like 
AlexNet, GoogLeNet, Residual Network (ResNet), and VGGNet for corrosion 
classification [5-7], there has been limited research on recent advancements such as 
Feature Pyramid Network (FPN) [8], U-Net [9], and ensemble learning [10]. These 
methods have shown promising results and could be beneficial for improving the 
accuracy and efficiency of automated corrosion detection. 

This paper proposes a deep learning-based corrosion segmentation method that 
combines three deep learning models and ensemble learning to automatically identify 
and segment corroded regions in high-resolution images. The study focuses on 
developing a method to replace or supplement manual corrosion measurement 
according to ASTM D1654. The goal is to use a computer vision-based approach for 
automatic surface area measurement of corrosion on test specimens. This would 
drastically reduce analysis time and can then be further developed to enable automated 
rapid assessment for large-scale infrastructure and buildings. The following sections 
will discuss laboratory-tested specimens, image annotation, preprocessing, deep neural 
networks architectures including FPN, U-Net, ResNet, and VGGNet, ensemble training, 
and corrosion prediction results from three deep learning models and ensemble learning. 
 
 
EXPERIMENTAL PROCEDURE  
 

In this study, hundreds of painted/coated test panels were scribed and exposed to 
extreme weathering conditions to accelerate corrosion at the predefined scribe marks. 
The purpose of these scribe marks is to assess the performance of coatings in 
accordance with ASTM D1654. Standardized flaws were created on these test panels 
by making line and X-shaped scribes on the specimens. Accelerated weathering 
conditions were then simulated in the laboratory to rapidly induce corrosion on the 
test panels. The corrosion acceleration process followed ISO 12944 guidelines for 
corrosion protection of steel structures by protective paint systems. This involved 
subjecting the panels to alternating exposures of ultraviolet (UV) radiation and water 
condensation for four hours each over three days, followed by three days in a salt fog 



chamber and one day in a negative 20-degree Celsius freezer. This one-week cycle 
was repeated 12 times. Afterward, the test panels were photographed using a high-
resolution digital microscope. These images were subsequently annotated and 
utilized for training, testing, and validation of the deep learning models and ensemble 
learning techniques. 
 
 
PROPOSED DEEP LEARNING-BASED CORROSION SEGMENTATION 
METHOD 

 
This study presents a data-driven approach that utilizes three deep learning-based 

models and an ensemble learning technique to automatically detect and segment 
corroded areas in high-resolution images, where "segment" refers to the partitioning 
of an image into multiple regions based on specific criteria. The proposed method 
involves several stages (as illustrated in Figure 1), including: (1) Annotation, 
preprocessing, and augmentation of image data; (2) Application of three deep 
learning-based models/learners for corroded region segmentation, namely Feature 
Pyramid Network (FPN) [8] with Residual Network (ResNet)-34 encoder [11], UNet 
[9] with ResNet-34 encoder, and UNet++ [12] with Visual Geometry Group (VGG)-
19 encoder [13]; (3) Assessment of the performance of the three models/learners; and 
(4) Ensemble learning involving the three models/learners and subsequent evaluation. 

 

 
Figure 1. Proposed deep learning-based method. 

Data Annotation, Preprocessing, and Augmentation 

This study utilized high-resolution images of varying sizes, ranging from 2,880 × 
2,160 to 11,020 × 9,295 pixels. These images were manually annotated with the Labkit 
extension in ImageJ, a robust image processing software [14]. Figure 2 exhibits some 
examples of the annotated images and their corresponding corrosion masks. The dataset 
comprised a total of 262 images, which were divided into training, validation, and 
testing subsets in an 8:1:1 ratio. The training, validation, and testing subsets contained 
209, 26, and 27 images, respectively. To accommodate the original images within GPU 
memory, both the images and their corresponding masks were divided into non-
overlapping 256 × 256 patches, rather than downsampling [15], which allowed for the 
preservation of maximum detail. Splitting resulted in 424,194 patches for training and 
validation. During testing, the test images were predicted using 256 × 256 patches and 
reconstructed by merging them to the original resolution. 

 



 

 
Figure 2. Examples of four individual annotated and preprocessed images with corresponding masks. 

 
This study employed horizontal flipping as a data augmentation method to increase 

the diversity of the dataset [16]. By doing so, the dataset was enriched with a wider 
range of corrosion patterns, which could help the model learn more robust features for 
segmentation. Data augmentation enhanced the model's generalization capabilities by 
reducing the risk of overfitting to the training data. Furthermore, by introducing 
variations in the images, data augmentation strengthened the model's capability to 
handle diverse situations and conditions that may occur in real-world scenarios, thus 
enhancing its practical applicability. 
 
Model Architecture 
 

Semantic segmentation is typically performed using a two-stage network consisting 
of an encoder and a decoder. The encoder, made up of convolutional layers, extracts 
high-level features from the input image, while the decoder is an upsampling network 
that generates a probability map for each pixel and its corresponding class, recovers 
spatial resolution, and produces segmentation masks that match the input image size. 
This study employed three deep learning-based models for semantic segmentation: FPN 
with ResNet-34 encoder, UNet with ResNet-34 encoder, and UNet++ with VGG-19 
encoder. 

Encoder: The authors leveraged ResNet-34 and VGG-19 as the backbone networks 
to extract features from images. Both of these networks have been pre-trained on the 
ImageNet dataset [17], an extensive annotated collection of over one million images. 
VGG-19 utilizes multi-layered blocks of 3x3 convolutional filters, which allows it to 
extract complex features from images. On the other hand, ResNet-34, implied by its 
name, is comprised of 34 layers, each with shortcut connections that employ residual 
learning. This approach of learning the difference (or residual) between the input and 
output of a layer rather than the underlying function directly, enables ResNet to 
overcome the vanishing gradient problem [11] and train deep networks efficiently 
without any loss in performance. 

Feature Pyramid Network (FPN): FPN is a segmentation model that uses a top-
down pathway and lateral connections to construct a feature pyramid from a single-scale 
input image. This architecture enables FPN to generate feature maps with rich semantic 
information and high spatial resolution at multiple scales, leading to improved 



segmentation accuracy. FPN achieves this by using the top-down pathway to upsample 
feature maps from higher encoder levels and merging them with corresponding feature 
maps from lower encoder levels through lateral connections. By doing so, FPN 
constructs a feature pyramid where the feature maps at each level retain the semantic 
information from higher levels while maintaining the spatial resolution of the lower 
levels. In this study, FPN employed ResNet-34 as the encoder. ResNet-34 is a deep 
neural network architecture that has shown excellent performance in various computer 
vision tasks, including image classification, object detection, and segmentation. With 
ResNet-34 as the encoder, FPN was able to leverage the powerful representation 
capabilities of the encoder to construct a feature pyramid that captures rich semantic 
information at multiple scales, leading to improved segmentation performance. 

UNet: The UNet is an advanced neural network architecture used for image 
segmentation tasks. It consists of two main paths: an encoding path and a decoding path. 
The encoding path is responsible for feature extraction from the input image and the 
decoding path recovers the feature representations to produce the segmentation map. 
One of the unique features of UNet is the incorporation of skip connections, which allow 
for the preservation of spatial information and the recovery of fine details during 
segmentation. These skip connections link the encoding and decoding paths at different 
levels, allowing the model to capture features at multiple scales. To enhance the feature 
extraction capability of the UNet, ResNet-34 was used as the encoder in this study to 
capture high-level features from images. Incorporating ResNet-34 as the encoder in 
UNet can improve the model's ability to extract meaningful features from the input 
image, which can lead to more accurate segmentation results. 

UNet++: The UNet++ is an enhanced version of the UNet model for image 
segmentation. UNet++ improves upon the original architecture by incorporating nested 
and dense skip connections between the encoder and decoder paths. These connections 
facilitate better preservation of spatial and contextual information, enabling the network 
to adapt to varying levels of complexity. In this study, VGG-19 was employed as the 
encoder for UNet++, providing more diverse features for segmentation. This allows for 
greater flexibility in capturing the relevant image features for accurate segmentation. 
The nested and dense skip connections in UNet++ enable the model to capture both 
low-level and high-level features by concatenating feature maps of different sizes. This 
allows the network to better integrate contextual information and preserve spatial 
resolution throughout the segmentation process. 

 
Model Evaluation 
 

In this study, the Dice score [18] and Intersection over Union (IoU) score were 
selected to assess the efficacy of the proposed deep learning trainers and ensemble 
learning approach. The Dice score, also known as the F-1 score, is a measure of the 
overlap between the ground truth and predicted outcomes. It ranges from 0 to 1, with 
higher values indicating better agreement between the prediction and the ground truth. 
The IoU score is a metric that measures the similarity between the predicted 
segmentation mask and the ground truth segmentation mask. It is calculated by dividing 
the area of overlap between the two sets by the area of union between the two sets. IoU 
scores range from 0 to 1, where 0 means no overlap and 1 means perfect overlap. The 
formulae for calculating the Dice score and IoU score are as follows: 

 



                                                     𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  2 × | 𝑋𝑋 ∩ 𝑌𝑌 |
| 𝑋𝑋 |+ | 𝑌𝑌 |

                                          (1) 

𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  | 𝑋𝑋 ∩ 𝑌𝑌 |
| 𝑋𝑋 ∪ 𝑌𝑌 |

=  | 𝑋𝑋 ∩ 𝑌𝑌 |
| 𝑋𝑋 |+ | 𝑌𝑌 |−| 𝑋𝑋 ∩ 𝑌𝑌 |                                             

(2) 

where | 𝑋𝑋 |  and | 𝑌𝑌 |  denote the pixel counts for the ground truth and predicted 
outcomes, respectively.  
 
Ensemble Learning 
 

Ensemble learning method was proposed in this study. Three learners were trained 
separately and then combined to improve overall performance. The weights w1, w2, and 
w3 represent the relative importance of each learner in the ensemble. These weights are 
constrained to be greater than zero and their sum must equal 1. The ensemble prediction 
F(x) for a given input x is calculated as the weighted sum of the predictions from the 
three learners, as illustrated in Equation 3. For pixel-level classification, a binary output 
is obtained by applying a threshold function, Mask(x), which assigns 0 to the ensemble 
prediction if it falls between 0 and the selected threshold, and 1 if it falls between the 
selected threshold and 1, as depicted in Equation 4. 

𝐹𝐹(𝑥𝑥) =  𝑤𝑤1  ×  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1(𝑥𝑥) + 𝑤𝑤2  ×  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2(𝑥𝑥) +  𝑤𝑤3  ×  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀3(𝑥𝑥)  

(𝑤𝑤1,𝑤𝑤2,𝑤𝑤3 > 0, 𝑤𝑤1 + 𝑤𝑤2+ 𝑤𝑤3 = 1)            (3) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) =  � 0, 0 < 𝐹𝐹(𝑥𝑥) ≤ 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜
 1, 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 < 𝐹𝐹(𝑥𝑥) ≤ 1                                                       (4) 

 
 
RESULT AND DISCUSSION 

 
The deep learning-based methods were implemented using PyTorch [19], a flexible 

and widely adopted Python deep learning framework that enables GPU acceleration. 
All three models were trained for 10 epochs separately, using the Stochastic Gradient 
Descent (SGD) optimizer with a momentum of 0.9 to overcome local minima [20]. The 
learning rate, determining the step size that the optimizer takes to reach the minimum 
of the loss function, was set to 0.0001. A weight decay parameter of 1e−4 was employed 
to penalize large weights and prevent overfitting. Dice loss served as the loss function 
for all three models. The weights for the ensemble learning method were selected using 
the grid search method (a hyperparameter optimization technique used to find the best 
combination of hyperparameter values for a machine learning mode) to optimize 
performance. The weights for ResNet34-FPN, ResNet34-UNet, and VGG19-UNet++ 
are 0.1, 0.5, and 0.4, respectively. 

Table I presents the results obtained from three deep learning models and the 
ensemble learning method. It demonstrates that ResNet34-UNet achieves the highest 
Dice and IoU scores among the individual models, followed by VGG19-UNet++. 
ResNet34-FPN has the lowest scores among the single models. Ensemble learning, 
which combines the predictions of multiple models, yields the highest scores overall, 
indicating that it benefits from the diversity and complementarity of different learners. 

Figure 3 displays examples of original images, corresponding ground truth masks, 
and predicted masks of the ensemble learning method. As shown, the proposed method 
can successfully detect most corrosion areas and produce accurate segmentation masks. 



However, there are some limitations. First, the method tends to undersegment parts of 
the corrosion that have low contrast or irregular shapes, resulting in false negatives. 
Second, the method suffers from edge artifacts caused by the splitting and merging 
operations that divide the image into patches and then stitch them together. These 
artifacts can affect the smoothness and continuity of the segmentation boundaries, 
leading to false positives. More robust and adaptive techniques for splitting and merging 
need to be explored to overcome these challenges. 

 
TABLE I. RESULTS OBTAINED FROM THREE DEEP LEARNING-BASED MODELS 

AND ENSEMBLE LEARNING 
Method Dice Score IoU Score 

ResNet34 - FPN 86.1% 78.2% 
ResNet34 - UNet 89.5% 83.0% 
VGG19 - UNet++ 87.9% 80.8% 
Ensemble Learning 90.1% 83.9% 

 

 
Figure 3. Examples of original images and their corresponding ground-truth and predicted masks. 

 
 
CONCLUSION 

 
The proposed deep learning-based corrosion segmentation method offers a 

promising approach to automatically detect and segment corroded regions from high-
resolution images. The ensemble learning method, which combines the predictions of 
FPN with ResNet-34 encoder, UNet with ResNet-34 encoder, and UNet++ with VGG-
19 encoder, outperforms the individual models, achieving a Dice score of 90.1% and an 
IoU score of 83.9%. Despite some limitations, such as undersegmentation and edge 
artifacts, the proposed method shows great potential for real-world corrosion detection 
and segmentation applications. Future work may explore more robust and adaptive 
techniques for splitting and merging operations to overcome these challenges and 
further improve the segmentation accuracy. 



REFERENCES 
 
1. Spencer Jr, B. F., Hoskere, V., & Narazaki, Y. (2019). Advances in computer vision-based civil 

infrastructure inspection and monitoring. Engineering, 5(2), 199-222. 
2. Flah, M., Suleiman, A. R., & Nehdi, M. L. (2020). Classification and quantification of cracks in 

concrete structures using deep learning image-based techniques. Cement and Concrete 
Composites, 114, 103781. 

3. Jahanshahi, M. R., Kelly, J. S., Masri, S. F., & Sukhatme, G. S. (2009). A survey and evaluation of 
promising approaches for automatic image-based defect detection of bridge structures. Structure and 
Infrastructure Engineering, 5(6), 455-486. 

4. Bai, Y., Zha, B., Sezen, H., & Yilmaz, A. (2023). Engineering deep learning methods on automatic 
detection of damage in infrastructure due to extreme events. SHM, 22(1), 338-352. 

5. Holm, E., Transeth, A. A., Knudsen, O. Ø., & Stahl, A. (2020, January). Classification of corrosion 
and coating damages on bridge constructions from images using convolutional neural networks. 
In Twelfth International Conference on Machine Vision (Vol. 11433, pp. 549-556). SPIE. 

6. Shi, J., Dang, J., Cui, M., Zuo, R., Shimizu, K., Tsunoda, A., & Suzuki, Y. (2021). Improvement of 
damage segmentation based on pixel-level data balance using vgg-unet. Applied sciences, 11(2), 518. 

7. Luo, C., Yu, L., Yan, J., Li, Z., Ren, P., Bai, X., Yang, E., & Liu, Y. (2021). Autonomous detection 
of damage to multiple steel surfaces from 360 panoramas using deep neural networks. Computer‐
Aided Civil and Infrastructure Engineering, 36(12), 1585-1599. 

8. Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid 
networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern 
recognition (2117-2125). 

9. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical 
image segmentation. In Proceedings of the MICCAI 2015 conference on  Medical Image Computing 
and Computer-Assisted Intervention, pp. 234-241). 

10. Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data 
Mining and Knowledge Discovery, 8(4), e1249. 

11. He, K., Zhang, X., Ren, S., & Sun, J. (2016). “Deep residual learning for image recognition.” 
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). 

12. Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., & Liang, J. (2019). “Unet++: Redesigning skip 
connections to exploit multiscale features in image segmentation.” IEEE transactions on medical 
imaging, 39(6), 1856-1867. 

13. Simonyan, K., & Zisserman, A. (2014). “Very deep convolutional networks for large-scale image 
recognition.” arXiv preprint arXiv:1409.1556. 

14. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). “NIH Image to ImageJ: 25 years of image 
analysis.” Nature methods, 9(7), 671-675. 

15. Nguyen, H., Wang, S., Wilson, R., Eick, B., & Becerra-Stasiewicz, N. (2023). Machine Learning and 
Computer Vision Approaches for Corrosion Detection. The 2023 DoD Corrosion Prevention 
Technology and Innovation Symposium. 

16. Shorten, C., & Khoshgoftaar, T. M. (2019). “A survey on image data augmentation for deep 
learning.” Journal of big data, 6(1), 1-48. 

17. Deng, W. Dong, R. Socher, L. -J. Li, Kai Li and Li Fei-Fei, “ImageNet: A large-scale hierarchical 
image database.” 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248-255. 

18. Zijdenbos, A. P., Dawant, B. M., Margolin, R. A., & Palmer, A. C. (1994). Morphometric analysis 
of white matter lesions in MR images: method and validation. IEEE transactions on medical 
imaging, 13(4), 716-724. 

19. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... & Chintala, S. (2019). 
“Pytorch: An imperative style, high-performance deep learning library.” Advances in neural 
information processing systems, 32. 

20. Qian, N. (1999). “On the momentum term in gradient descent learning algorithms.” Neural networks, 
12(1), 145-151. 




