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ABSTRACT

The corrosion of infrastructure and facilities poses a significant challenge for the
United States Department of Defense (DoD) in terms of cost and military readiness. To
tackle this challenge, our research introduces a data-driven corrosion segmentation
method that combines three deep learning-based models and an ensemble learning
approach for the automatic identification and segmentation of corroded regions within
high-resolution images. The method involves several stages, such as data annotation,
preprocessing, augmentation, model implementation, and performance evaluation. The
deep learning models used include Feature Pyramid Network (FPN) with Residual
Network (ResNet)-34 encoder, UNet with ResNet-34 encoder, and UNet++ with Visual
Geometry Group (VGG)-19 encoder. Ensemble learning, a technique that integrates
these deep learning models, was employed to improve prediction accuracy and overall
performance. The proposed method is evaluated using both the Dice score and the
Intersection over Union (IoU) score metrics. Experimental results demonstrate that the
ensemble learning approach outperforms individual models, achieving a Dice score of
90.1% and an IoU score of 83.9%. The approach shows promise to automatically detect
and measure corrosion, which can reduce inspection costs and identify major issues to
aid in prevention of structural failure. The tool developed in this study will be expanded
to provide similar capabilities for large-scale civil infrastructure.

INTRODUCTION

Mitigating corrosion currently accounts for 40% of the national maintenance
budget, totaling over $20 billion a year for the military and equally impacting civil
works infrastructure. Corrosion poses a significant challenge for the U.S. Army Corps
of Engineers, leading to substantial economic and environmental consequences.

Hai D. Nguyen, The U.S. Army Corps of Engineers, Champaign, IL 61822

Shengyi Wang, University of lllinois Urbana-Champaign, Urbana, IL 61801

Rebekah Wilson, The U.S. Army Corps of Engineers, Champaign, IL 61822

Brian Eick, The U.S. Army Corps of Engineers, 2902 Newmark Dr, Champaign, IL 61822
Natalie Becerra-Stasiewicz, The U.S. Army Corps of Engineers, Champaign, IL 61822



It contributes to air and water pollution, soil and vegetation contamination, and
generates waste, among other issues. Additionally, corroded infrastructure is prone to
structural failure, resulting in catastrophic disasters and loss of life, as demonstrated by
incidents such as the collapse of the Morandi bridge in Genoa, Italy and the sinking of
the Erika ship in Brittany, France. Moreover, corrosion significantly increases
maintenance expenses and reduces the lifespan of infrastructure. Therefore, early
detection of corroded areas is crucial for maintaining structural integrity, preventing
disasters, and minimizing long-term maintenance costs.

In recent years, there has been a significant increase in publications related to
automated corrosion detection using machine learning and image-based methods.
Several studies, including Spencer et al. [1], Flah et al. [2], Jahanshahi et al. [3], and Bai
et al. [4], have investigated various techniques for automated inspection and structural
damage detection. These techniques include Convolutional Neural Network (CNN)
classifiers, Otsu image processing, image registration, morphological image processing,
edge detection, texture and color analysis, wavelet transform, pattern recognition, image
classification, object detection, and semantic segmentation. By using these methods,
researchers have been able to identify different types of damage, such as cracks,
spalling, and corrosion. While many researchers have used popular CNN networks like
AlexNet, GoogleNet, Residual Network (ResNet), and VGGNet for corrosion
classification [5-7], there has been limited research on recent advancements such as
Feature Pyramid Network (FPN) [8], U-Net [9], and ensemble learning [10]. These
methods have shown promising results and could be beneficial for improving the
accuracy and efficiency of automated corrosion detection.

This paper proposes a deep learning-based corrosion segmentation method that
combines three deep learning models and ensemble learning to automatically identify
and segment corroded regions in high-resolution images. The study focuses on
developing a method to replace or supplement manual corrosion measurement
according to ASTM D1654. The goal is to use a computer vision-based approach for
automatic surface area measurement of corrosion on test specimens. This would
drastically reduce analysis time and can then be further developed to enable automated
rapid assessment for large-scale infrastructure and buildings. The following sections
will discuss laboratory-tested specimens, image annotation, preprocessing, deep neural
networks architectures including FPN, U-Net, ResNet, and VGGNet, ensemble training,
and corrosion prediction results from three deep learning models and ensemble learning.

EXPERIMENTAL PROCEDURE

In this study, hundreds of painted/coated test panels were scribed and exposed to
extreme weathering conditions to accelerate corrosion at the predefined scribe marks.
The purpose of these scribe marks is to assess the performance of coatings in
accordance with ASTM D1654. Standardized flaws were created on these test panels
by making line and X-shaped scribes on the specimens. Accelerated weathering
conditions were then simulated in the laboratory to rapidly induce corrosion on the
test panels. The corrosion acceleration process followed ISO 12944 guidelines for
corrosion protection of steel structures by protective paint systems. This involved
subjecting the panels to alternating exposures of ultraviolet (UV) radiation and water
condensation for four hours each over three days, followed by three days in a salt fog



chamber and one day in a negative 20-degree Celsius freezer. This one-week cycle
was repeated 12 times. Afterward, the test panels were photographed using a high-
resolution digital microscope. These images were subsequently annotated and
utilized for training, testing, and validation of the deep learning models and ensemble
learning techniques.

PROPOSED DEEP LEARNING-BASED CORROSION SEGMENTATION
METHOD

This study presents a data-driven approach that utilizes three deep learning-based
models and an ensemble learning technique to automatically detect and segment
corroded areas in high-resolution images, where "segment" refers to the partitioning
of an image into multiple regions based on specific criteria. The proposed method
involves several stages (as illustrated in Figure 1), including: (1) Annotation,
preprocessing, and augmentation of image data; (2) Application of three deep
learning-based models/learners for corroded region segmentation, namely Feature
Pyramid Network (FPN) [8] with Residual Network (ResNet)-34 encoder [11], UNet
[9] with ResNet-34 encoder, and UNet++ [12] with Visual Geometry Group (VGG)-
19 encoder [13]; (3) Assessment of the performance of the three models/learners; and
(4) Ensemble learning involving the three models/learners and subsequent evaluation.
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Figure 1. Proposed deep learning-based method.
Data Annotation, Preprocessing, and Augmentation

This study utilized high-resolution images of varying sizes, ranging from 2,880 x
2,160 to 11,020 x 9,295 pixels. These images were manually annotated with the Labkit
extension in ImagelJ, a robust image processing software [14]. Figure 2 exhibits some
examples of the annotated images and their corresponding corrosion masks. The dataset
comprised a total of 262 images, which were divided into training, validation, and
testing subsets in an 8:1:1 ratio. The training, validation, and testing subsets contained
209, 26, and 27 images, respectively. To accommodate the original images within GPU
memory, both the images and their corresponding masks were divided into non-
overlapping 256 x 256 patches, rather than downsampling [15], which allowed for the
preservation of maximum detail. Splitting resulted in 424,194 patches for training and
validation. During testing, the test images were predicted using 256 x 256 patches and
reconstructed by merging them to the original resolution.
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Figure 2. Examples of four individual annotated and preprocessed images with corresponding masks.

This study employed horizontal flipping as a data augmentation method to increase
the diversity of the dataset [16]. By doing so, the dataset was enriched with a wider
range of corrosion patterns, which could help the model learn more robust features for
segmentation. Data augmentation enhanced the model's generalization capabilities by
reducing the risk of overfitting to the training data. Furthermore, by introducing
variations in the images, data augmentation strengthened the model's capability to
handle diverse situations and conditions that may occur in real-world scenarios, thus
enhancing its practical applicability.

Model Architecture

Semantic segmentation is typically performed using a two-stage network consisting
of an encoder and a decoder. The encoder, made up of convolutional layers, extracts
high-level features from the input image, while the decoder is an upsampling network
that generates a probability map for each pixel and its corresponding class, recovers
spatial resolution, and produces segmentation masks that match the input image size.
This study employed three deep learning-based models for semantic segmentation: FPN
with ResNet-34 encoder, UNet with ResNet-34 encoder, and UNet++ with VGG-19
encoder.

Encoder: The authors leveraged ResNet-34 and VGG-19 as the backbone networks
to extract features from images. Both of these networks have been pre-trained on the
ImageNet dataset [17], an extensive annotated collection of over one million images.
VGG-19 utilizes multi-layered blocks of 3x3 convolutional filters, which allows it to
extract complex features from images. On the other hand, ResNet-34, implied by its
name, is comprised of 34 layers, each with shortcut connections that employ residual
learning. This approach of learning the difference (or residual) between the input and
output of a layer rather than the underlying function directly, enables ResNet to
overcome the vanishing gradient problem [11] and train deep networks efficiently
without any loss in performance.

Feature Pyramid Network (FPN): FPN is a segmentation model that uses a top-
down pathway and lateral connections to construct a feature pyramid from a single-scale
input image. This architecture enables FPN to generate feature maps with rich semantic
information and high spatial resolution at multiple scales, leading to improved



segmentation accuracy. FPN achieves this by using the top-down pathway to upsample
feature maps from higher encoder levels and merging them with corresponding feature
maps from lower encoder levels through lateral connections. By doing so, FPN
constructs a feature pyramid where the feature maps at each level retain the semantic
information from higher levels while maintaining the spatial resolution of the lower
levels. In this study, FPN employed ResNet-34 as the encoder. ResNet-34 is a deep
neural network architecture that has shown excellent performance in various computer
vision tasks, including image classification, object detection, and segmentation. With
ResNet-34 as the encoder, FPN was able to leverage the powerful representation
capabilities of the encoder to construct a feature pyramid that captures rich semantic
information at multiple scales, leading to improved segmentation performance.

UNet: The UNet is an advanced neural network architecture used for image
segmentation tasks. It consists of two main paths: an encoding path and a decoding path.
The encoding path is responsible for feature extraction from the input image and the
decoding path recovers the feature representations to produce the segmentation map.
One of the unique features of UNet is the incorporation of skip connections, which allow
for the preservation of spatial information and the recovery of fine details during
segmentation. These skip connections link the encoding and decoding paths at different
levels, allowing the model to capture features at multiple scales. To enhance the feature
extraction capability of the UNet, ResNet-34 was used as the encoder in this study to
capture high-level features from images. Incorporating ResNet-34 as the encoder in
UNet can improve the model's ability to extract meaningful features from the input
image, which can lead to more accurate segmentation results.

UNet++: The UNet++ is an enhanced version of the UNet model for image
segmentation. UNet++ improves upon the original architecture by incorporating nested
and dense skip connections between the encoder and decoder paths. These connections
facilitate better preservation of spatial and contextual information, enabling the network
to adapt to varying levels of complexity. In this study, VGG-19 was employed as the
encoder for UNet++, providing more diverse features for segmentation. This allows for
greater flexibility in capturing the relevant image features for accurate segmentation.
The nested and dense skip connections in UNet++ enable the model to capture both
low-level and high-level features by concatenating feature maps of different sizes. This
allows the network to better integrate contextual information and preserve spatial
resolution throughout the segmentation process.

Model Evaluation

In this study, the Dice score [18] and Intersection over Union (IoU) score were
selected to assess the efficacy of the proposed deep learning trainers and ensemble
learning approach. The Dice score, also known as the F-1 score, is a measure of the
overlap between the ground truth and predicted outcomes. It ranges from 0 to 1, with
higher values indicating better agreement between the prediction and the ground truth.
The IoU score is a metric that measures the similarity between the predicted
segmentation mask and the ground truth segmentation mask. It is calculated by dividing
the area of overlap between the two sets by the area of union between the two sets. loU
scores range from 0 to 1, where 0 means no overlap and 1 means perfect overlap. The
formulae for calculating the Dice score and IoU score are as follows:
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where | X | and | Y | denote the pixel counts for the ground truth and predicted
outcomes, respectively.

Ensemble Learning

Ensemble learning method was proposed in this study. Three learners were trained
separately and then combined to improve overall performance. The weights w;, w2, and
ws represent the relative importance of each learner in the ensemble. These weights are
constrained to be greater than zero and their sum must equal 1. The ensemble prediction
F(x) for a given input x is calculated as the weighted sum of the predictions from the
three learners, as illustrated in Equation 3. For pixel-level classification, a binary output
is obtained by applying a threshold function, Mask(x), which assigns 0 to the ensemble
prediction if it falls between 0 and the selected threshold, and 1 if it falls between the
selected threshold and 1, as depicted in Equation 4.

F(x) = w; X Modell(x) + w, X Model2(x) + w; X Model3(x)

(Wi, wy,wsz >0, wy + wo+ws =1) 3)
_ (0, 0 <F(x) <threshold
Mask(x) = {1, threshold < F(x) < 1 )
RESULT AND DISCUSSION

The deep learning-based methods were implemented using PyTorch [19], a flexible
and widely adopted Python deep learning framework that enables GPU acceleration.
All three models were trained for 10 epochs separately, using the Stochastic Gradient
Descent (SGD) optimizer with a momentum of 0.9 to overcome local minima [20]. The
learning rate, determining the step size that the optimizer takes to reach the minimum
of the loss function, was set to 0.0001. A weight decay parameter of 1e—4 was employed
to penalize large weights and prevent overfitting. Dice loss served as the loss function
for all three models. The weights for the ensemble learning method were selected using
the grid search method (a hyperparameter optimization technique used to find the best
combination of hyperparameter values for a machine learning mode) to optimize
performance. The weights for ResNet34-FPN, ResNet34-UNet, and VGG19-UNet++
are 0.1, 0.5, and 0.4, respectively.

Table I presents the results obtained from three deep learning models and the
ensemble learning method. It demonstrates that ResNet34-UNet achieves the highest
Dice and IoU scores among the individual models, followed by VGGI19-UNet++.
ResNet34-FPN has the lowest scores among the single models. Ensemble learning,
which combines the predictions of multiple models, yields the highest scores overall,
indicating that it benefits from the diversity and complementarity of different learners.

Figure 3 displays examples of original images, corresponding ground truth masks,
and predicted masks of the ensemble learning method. As shown, the proposed method
can successfully detect most corrosion areas and produce accurate segmentation masks.



However, there are some limitations. First, the method tends to undersegment parts of
the corrosion that have low contrast or irregular shapes, resulting in false negatives.
Second, the method suffers from edge artifacts caused by the splitting and merging
operations that divide the image into patches and then stitch them together. These
artifacts can affect the smoothness and continuity of the segmentation boundaries,
leading to false positives. More robust and adaptive techniques for splitting and merging
need to be explored to overcome these challenges.

TABLE I. RESULTS OBTAINED FROM THREE DEEP LEARNING-BASED MODELS

AND ENSEMBLE LEARNING
Method Dice Score IoU Score
ResNet34 - FPN 86.1% 78.2%
ResNet34 - UNet 89.5% 83.0%
VGGI19 - UNet++ 87.9% 80.8%
Ensemble Learning 90.1% 83.9%
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Figure 3. Examples of original images and their corresponding ground-truth and predicted masks.

CONCLUSION

The proposed deep learning-based corrosion segmentation method offers a
promising approach to automatically detect and segment corroded regions from high-
resolution images. The ensemble learning method, which combines the predictions of
FPN with ResNet-34 encoder, UNet with ResNet-34 encoder, and UNet++ with VGG-
19 encoder, outperforms the individual models, achieving a Dice score of 90.1% and an
IoU score of 83.9%. Despite some limitations, such as undersegmentation and edge
artifacts, the proposed method shows great potential for real-world corrosion detection
and segmentation applications. Future work may explore more robust and adaptive
techniques for splitting and merging operations to overcome these challenges and
further improve the segmentation accuracy.
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