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ABSTRACT

Defects on manufacturing equipment, such as abrasion, corrosion, and deposition,
may decrease the production quality and even lead to the shutdown of the entire
manufacturing line. Various condition monitoring technologies have been developed to
predict machine health and safety through contact sensors. The noncontact camera has
shown many advantages over the conventional contact sensors, including high spatial
resolution, low cost and remote sensing. Moreover, phase-based motion amplification
has proven to be an efficient tool for detecting subtle vibrations. However, the motion
amplification requires significant computational resources and does not provide direct
motion signal output. To detect abnormal vibrationsduring long-term inspections, a
more efficient phase-based motion estimation technique is necessary. In this study, we
propose a real-time vibration monitoring system that uses a camera and image phase.
We use single optimal Gabor filter with phase-based optical flow to extract the
vibrational motion. The use of single optimal filter significantly reduces computation
costs and enables accurate measurement of vibration signals even in the low-light
condition and/or with image noise. Parallel computing scheme is also introduced for
real-time condition monitoring. We conducted validation experiments on a structure
with multiple vibrating components that simulate a real factory line. Damage detection
is performed on the structure with two damaged cases. All the results show that the
proposed technique can accurately measure displacement and provide a novel solution
for camera-based real-time damage detection.

INTRODUCTION

Cameras have emerged as a powerful tool for monitoring the state of structures and
mechanical systems. Compared to traditional contact sensors, cameras offer high-
resolution measurements without mass loading effects and reduce costs by eliminating
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the need for installation of numerous physical sensors [1]. Seveal camera-based
techniques have been developed for estimating motion. Digital image correlation
enables full-field measurements and is applicable to three-dimensional deformation of
structures[2-4]. Advanced Edge detection using wavelet transforms can measure the
displacement with sub-pixel accuracy [5].

The concept of phase generation, using quadrature filters such as complex steerable
filters and complex Gabor filters, is key in revealing subtle movements in images. One
prominent technique for motion magnification, proposed by Wadhwa et al. [6], uses a
complex steerable pyramid to achieve multi-scale and multi-direction image
decomposition. This process involves targeting different spatial frequencies with a
series of steerable filters, tracking phase changes over time, and then rescaling these to
amplify motion at the targeted frequency band. Various studies have aimed to enhance
the precision of camera-based techniques by leveraging motion magnification [7-9].

However, challenges remain, such as magnified noise, nonlinear phase, and
computation costs, which may limit the application of these techniques in real-time
monitoring tasks. To address these issues, we propose a real-time vibration monitoring
system using phase-based optical flow with an optimal Gabor filter. This technique
achieves accurate measurements even in the complex capturing environments.
Additionally, we developed a parallel computing scheme optimized for phase-based
real-time motion processing to reduce computational costs. Experimental validation on
a structure simulating the real factory confirms the accuracy and robustness of the
proposed technique, demonstrating its potential for real-time monitoring tasks.

THEORY AND METHOD
Phase-Based Displacement Measurement using Optimal Complex Gabor Filter
To measure displacement, the phase-based optical flow (POF) using a single
optimal complex Gabor filter is adopted [10-11]. The filter’s common form in the spatial
domain is a 2D Gaussian envelope and a 2D complex sinusoid as shown:
G(x,y) = Ge(x,y) * (cos(2m(uox + voy)) + jsin(2m(uox + vpy))) (1)
where (uy, vy) is the center frequency, and Ge(x, y) is the Gaussian envelope. When

an image is filtered with the 2D complex Gabor filter, it becomes a complex-valued
image matrix:

R(X,y) =Are(x'y)+inm(x'y) (2)
The phase is calculated as:

@ (x,y) = arctan2(Apm (%, y)/Are (%, ) 3)

By assuming that the local phase contour remains constant in the image sequence,
motion estimation is performed using differentiation of the spatial phase gradient:

(@2 Py, ) * (Vs vy, 1) = [ (92 + 92) (W2 + v cos(B) + o, =0 (4)



where (vy, vy) is a vector that represents the full velocity, (@, @y) is the spatial phase
gradient, B is the angle between phase gradient and full velocity, and ¢, is the phase
change over time (after phase unwrapping).

The component velocity V.. is the projection of the full velocity on the direction of
phase gradient, which can be calculated using Eq. 4,

> = - _ -
Displacement of an object in a video is estimated by multiplying the velocity (v.)
components with the sampling interval of consecutive frames:

d(x,y,t) = V(x,y,t) * At (6)

The technique enables the measurement of small displacements on structures
without the need for separate tracking markers or patterns. However, the phase can be
unstable due to complex measurement environment, which may reduce the accuracy of
measured displacement .

Research has been conducted to optimize the complex Gabor filter to address this
issue [11-12]. The complex Gabor can be constructed in both spatial and frequency
domains, as shown in Fig. 1. Three parameters control the shapes of the filter, center
frequency (u,, v,), standard angular deviation (o), and standard radial deviation (a;.).
The use of a single optimal complex Gabor filter not only eliminates the issue of
unstable phase, but reduces the computation cost for real-time monitoring.

Spatial domain (real) Frequency domain

T = 8 pxl, a = 45°, (ug, vy) = (0.0884, 0.0884)

o, = 5pxl, 6, = 5 pxl, o = 0.159 pxl, 0,6 = 0.159 pxl

Figure 1 Filter Parameters of 2D Complex Gabor filter
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Figure 2 System flow of real-time monitoring system

Parallel Computing

The previous section discussed the technique with improved computational
efficiency, but the processing time still needs to be improved for real-time monitoring
at a rate of more than 200 frame per second. There are two methods to enhance the speed
of image processing: utilizing CUDA and employing Multi-Core CPU [9]. The CUDA
approach utilizes multiple general-purpose GPUs (Graphics Processing Units) for
parallel processing, which significantly improves the speed of image processing.
However, this method requires additional time for copying the image data to the GPU's
memory.

The parallel processing scheme proposed in this study is optimized for phase-based
technique using a complex Gabor filter and is based on Multi-Core CPU, as shown in
Fig. 2. The Multi-Core CPU method utilizes the system memory and multiple CPU
cores to accelerate image processing, providing a faster response even for memory
allocation and deallocation of high-speed video data stream, which can involve data
sizes of several tens of megabytes per second.

For processing in real-time, region of interest (100x100 pixels) was selected for
each measuring points. Additionally, an ordered queue has been utilized to control the
asynchronous situation between image capturing and POF computation.

EXPERIMENTAL VERIFICATION
Experimental Setup

As shown in Fig. 3, four component structures are installed on a plate that is excited
by a shaker with an input of 36 Hz sinusoidal wave signal. Every component exhibits a
local vibration under this excitation. The experiment uses a point-gray camera (FLIR
BFS-U17S7M) with laptop (i9-12900H, 40GB ram). The camera is equipped with a
ZEISS Milvus 2.8/15 lens, ensuring high-quality image capture at resolution of 640
x480. The frame rate is set at 250 frames per second.

The experiment data, which has seven labels, was obtained by monitoring the
structure under two conditions : normal and damaged. Two types of damage, bolt
loosening and pipe loosening, were simulated , as shown in Fig. 3c and TABLE I. The
measurement points for the four components are marked, as shown in Fig. 3d.
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Figure 3 Validation experiment: a) experiment setup, b) shakers and the four component
structures, c) damages (bolt loosening and pipe loosening), d) measuring points for each
component

TABLE I. LABELING INFORMATION AND DATA OVERVIEW

Location Number of Number of data
Label State of defects data Structure Label (Normal/Damaged)
#1 Normal None 450 Comp.1 #1#4 450/75
#2 Damaged Comp. 3 75
#1 #3
#3 Damaged  Comp. 2 75 Comp.2 47 450/150
#4 Damaged Comp. 1 75
Comp.3 #1#2 450/225
#5 Damaged Comp. 4 75 omp- #6 #7
#6 Damaged  Comp.3-4 75
Comp.4 #1#5 450/150
#7 Damaged  Comp.2-3 75 #6

The vibration signals were measured for 90 seconds in the normal state (#1) and 15
seconds for each with simulated damage (#2-7). The signals are divided into multiple
0.2-second samples (Normal state: 450 samples, damaged state: 75 samples for each).

Data Analysis

Figure 4 presents one of the measured datasets from Structure Component 3. the
top row of the figure shows the data captured in the normal state (#1) and the damaged
state (#6 and #7) from left to right. Time-frequency analysis was performed using
discrete wavelet transform, which has better computational efficiency compared to short
time Fourier transform. The resulting filtered data for different frequency bands are
presented in rows 2 to 4 of Fig. 4.
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Figure 4 Time-frequency analysis using discrete wavelet transform
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The feature extraction and dimensionality reduction algorithms were applied to
cluster the measured data of all the structure components. The features were extracted
in the time domain using detailed wavelet coefficients listed on the TABLE 1. Principle
component analysis was then carried out on these features, and the dimensionality
reduction showed that the data were clustered according to the state of structure, as
shown in Fig. 5.

TABLE II. COMMONLY USED FEATURES IN CONDITION MONITORING FIELD

Features Formula Features Formula Features Formula Features Formula
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TABLE III. FEATURES EXTRACTION BASSED ON WAVELET TRASNFORM

Features Formula Features Formula Features Formula
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¢D,,(x) : Detailed wavelet coefficients level of n

Y = cD;(x), ..., cD5(x)
R,, : Auto correlation function
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Figure 5. Dimensionality reduction using PCA. Features extracted from
structure component 1-4 were reduced into 3 dimensions.

CONCLUSION AND FUTURE WORK

In this study, we proposed a method for real-time measurement of structural
displacement and their application. We used phase-based optical flow with an optimized
filter and parallel computing programming to create a system that can efficiently
measure displacement in real-time. Furthermore, we validated the feasibility of the
proposed method in condition monitoring through lab-scale experiments, demonstrating
its potential application in data driven-based condition monitoring . Future plans include
conducting research on the application of fast deep learning models for real-world
applications .
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