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ABSTRACT 
 

Defects on manufacturing equipment, such as abrasion, corrosion, and deposition, 
may decrease the production quality and even lead to the shutdown of the entire 
manufacturing line. Various condition monitoring technologies have been developed to 
predict machine health and safety through contact sensors. The noncontact camera has 
shown many advantages over the conventional contact sensors, including high spatial 
resolution, low cost and remote sensing. Moreover, phase-based motion amplification 
has proven to be an efficient tool for detecting subtle vibrations. However, the motion 
amplification requires significant computational resources and does not provide direct 
motion signal output. To detect abnormal vibrationsduring long-term inspections, a 
more efficient phase-based motion estimation technique is necessary. In this study, we 
propose a real-time vibration monitoring system that uses a camera and image phase. 
We use single optimal Gabor filter with phase-based optical flow to extract the 
vibrational motion. The use of single optimal filter significantly reduces computation 
costs and enables accurate measurement of vibration signals even in the low-light 
condition and/or with image noise. Parallel computing scheme is also introduced for 
real-time condition monitoring. We conducted validation experiments on a structure 
with multiple vibrating components that simulate a real factory line. Damage detection 
is performed on the structure with two damaged cases. All the results show that the 
proposed technique can accurately measure displacement and provide a novel solution 
for camera-based real-time damage detection. 

 
 

INTRODUCTION 
 

Cameras have emerged as a powerful tool for monitoring the state of structures and 
mechanical systems. Compared to traditional contact sensors, cameras offer high- 
resolution measurements without mass loading effects and reduce costs by eliminating 
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the need for installation of numerous physical sensors [1]. Seveal camera-based 

techniques have been developed for estimating motion. Digital image correlation 

enables full-field measurements and is applicable to three-dimensional deformation of 

structures[2-4]. Advanced Edge detection using wavelet transforms can measure the 

displacement with sub-pixel accuracy [5].  

The concept of phase generation, using quadrature filters such as  complex steerable 

filters and complex Gabor filters, is key in revealing subtle movements in images. One 

prominent technique for motion magnification, proposed by Wadhwa et al. [6], uses a 

complex steerable pyramid to achieve multi-scale and multi-direction image 

decomposition. This process involves targeting different spatial frequencies with a 

series of steerable filters, tracking phase changes over time, and then rescaling these to 

amplify motion at the targeted frequency band. Various studies have aimed to enhance 

the precision of camera-based techniques by leveraging motion magnification [7-9]. 

However, challenges remain, such as magnified noise, nonlinear phase, and 

computation costs, which may  limit the application of these techniques in real-time 

monitoring tasks. To address these issues, we propose a real-time vibration monitoring 

system using phase-based optical flow with an optimal Gabor filter. This technique 

achieves accurate measurements even in the complex capturing environments. 

Additionally, we developed a parallel computing scheme optimized for phase-based 

real-time motion processing to reduce computational costs. Experimental validation on 

a structure simulating the real factory confirms the accuracy and robustness of the 

proposed technique, demonstrating its potential for real-time monitoring tasks. 

 

THEORY AND METHOD 

 

Phase-Based Displacement Measurement using Optimal Complex Gabor Filter 

 

To measure displacement, the phase-based optical flow (POF) using a single 

optimal complex Gabor filter is adopted [10-11]. The filter’s common form in the spatial 

domain is  a 2D Gaussian envelope and a 2D complex sinusoid as shown: 

 

𝐺(𝑥, 𝑦) = 𝐺𝑒(𝑥, 𝑦) ∗ (𝑐𝑜𝑠(2𝜋(𝑢0𝑥 + 𝑣0𝑦)) + 𝑗𝑠𝑖𝑛(2𝜋(𝑢0𝑥 + 𝑣0𝑦)))       (1) 

 

where (𝑢0, 𝑣0) is the center frequency, and 𝐺𝑒(𝑥, 𝑦) is the Gaussian envelope. When 

an image is filtered with the 2D complex Gabor filter, it becomes a complex-valued 

image matrix: 

 

𝑅(𝑥, 𝑦) = 𝐴𝑟𝑒(𝑥, 𝑦) + 𝑗𝐴𝑖𝑚(𝑥, 𝑦)                                   (2) 

 

The  phase is calculated as: 
           

𝜑(𝑥, 𝑦) = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝐴𝑖𝑚(𝑥, 𝑦)/𝐴𝑟𝑒(𝑥, 𝑦))                          (3) 

 

By assuming that the local phase contour remains constant in the image sequence, 

motion estimation is performed using differentiation of the spatial phase gradient: 

 

(𝜑𝑥, 𝜑𝑦 , 𝜑𝑡) ∙ (𝑣𝑥, 𝑣𝑦, 1) = √(𝜑𝑥
2 + 𝜑𝑦

2)(𝑣𝑥
2 + 𝑣𝑦

2) 𝑐𝑜𝑠(𝛽) + 𝜑𝑡 = 0        (4) 

 



where (vx, vy) is a vector that represents the full velocity, (φx, φy) is the spatial phase 

gradient, β is the angle between phase gradient and full velocity, and φt is the phase 

change over time (after phase unwrapping). 

The component velocity v⃗ c is the projection of the full velocity on the direction of 

phase gradient, which can be calculated using Eq. 4,  
 

𝑣 𝑐 = 𝜑⃗ 𝑥,𝑦
𝑛 ‖𝑣 𝑐‖ =

−𝜑𝑡

(𝜑𝑥
2+𝜑𝑦

2)
(𝜑𝑥, 𝜑𝑦)                                  (5) 

 

Displacement of an object in a video is estimated by multiplying the velocity (v⃗ c) 

components with the sampling interval of consecutive frames: 

 

𝑑(𝑥, 𝑦, 𝑡) = 𝑣 𝑐(𝑥, 𝑦, 𝑡) ∗ ∆𝑡                                           (6) 

 

The technique enables the measurement of small displacements on structures 

without the need for separate tracking markers or patterns. However, the phase can be 

unstable due to complex measurement environment, which may reduce the accuracy of 

measured displacement .  

Research has been conducted to optimize the complex Gabor filter to address this 

issue [11-12]. The complex Gabor can be constructed in both spatial and frequency 

domains, as shown in Fig. 1. Three parameters control the shapes of the filter, center 

frequency (u0, v0), standard angular deviation (𝜎𝑎), and standard radial deviation (𝜎𝑟). 

The use of a single optimal complex Gabor filter not only eliminates the issue of 

unstable phase, but reduces the computation cost for real-time monitoring.  

 

 
Figure 1 Filter Parameters of 2D Complex Gabor filter 



 
Figure 2 System flow of real-time monitoring system 

 

Parallel Computing 

 

The previous section discussed the technique with  improved computational 

efficiency, but the processing time still needs to be improved for real-time monitoring 

at a rate of more than 200 frame per second. There are two methods to enhance the speed 

of image processing: utilizing CUDA and employing Multi-Core CPU [9]. The CUDA 

approach utilizes multiple general-purpose GPUs (Graphics Processing Units) for 

parallel processing, which significantly improves the speed of image processing. 

However, this method requires additional time for copying the image data to the GPU's 

memory.  

The parallel processing scheme proposed in this study is optimized for phase-based 

technique using a complex Gabor filter and is based on Multi-Core CPU, as shown in 

Fig. 2. The Multi-Core CPU method utilizes the system memory and multiple CPU 

cores to accelerate image processing, providing  a faster response even for memory 

allocation and deallocation of high-speed video data stream, which can involve data 

sizes of  several tens of megabytes per second.  

For processing in real-time, region of interest (100×100 pixels) was selected for 

each measuring points. Additionally, an ordered queue has been utilized to control the 

asynchronous situation between image capturing and POF computation.  

 

 

EXPERIMENTAL VERIFICATION 

 

Experimental Setup 

 

As shown in Fig. 3, four component structures are installed on a plate that is excited 

by a shaker with an input of 36 Hz sinusoidal wave signal. Every component exhibits a 

local vibration under this excitation. The experiment uses a point-gray camera (FLIR 

BFS-U17S7M) with laptop (i9-12900H, 40GB ram). The camera is equipped with a 

ZEISS Milvus 2.8/15 lens, ensuring high-quality image capture at resolution of 640 

x480. The frame rate is set at 250 frames per second.  

The experiment data, which has  seven labels, was obtained by monitoring the 

structure under two conditions : normal and damaged. Two types of damage, bolt 

loosening and pipe loosening, were simulated , as shown in Fig. 3c and  TABLE Ⅰ. The 

measurement points for the four components are marked, as shown in Fig. 3d.  



 
Figure 3 Validation experiment: a) experiment setup, b) shakers and the four component 

structures, c) damages (bolt loosening and pipe loosening), d) measuring points for each 

component 

TABLE Ⅰ.  LABELING INFORMATION AND DATA OVERVIEW 

Label State 
Location 

of  defects 

Number of 

data 

#1 Normal None 450 

#2 Damaged Comp. 3 75 

#3 Damaged Comp. 2 75 

#4 Damaged Comp. 1 75 

#5 Damaged Comp. 4 75 

#6 Damaged Comp.3-4 75 

#7 Damaged Comp.2-3 75 
 

Structure Label 
Number of data 
(Normal/Damaged) 

Comp.1 #1#4 450/75 

Comp.2 
#1 #3 

#7 
450/150 

Comp.3 
#1 #2  

#6 #7 
450/225 

Comp.4 
#1 #5 

#6 
450/150 

 

    

The vibration signals were measured for 90 seconds in the normal state (#1) and 15 

seconds for each with simulated damage (#2-7). The signals are divided into multiple 

0.2-second samples (Normal state: 450 samples, damaged state: 75 samples for each). 
 

  

Data Analysis 

 

Figure 4 presents one of the measured datasets from Structure Component 3.  the 

top row of the figure shows the data captured in the normal state (#1) and the damaged 

state (#6 and #7) from left to right. Time-frequency analysis was performed using 

discrete wavelet transform, which has better computational efficiency compared to short 

time Fourier transform. The resulting filtered data for different frequency bands are 

presented in rows 2 to 4 of Fig. 4.  



 
Figure 4 Time-frequency analysis using discrete wavelet transform 

 

The feature extraction and dimensionality reduction algorithms were applied to 

cluster the measured data of all the structure components. The features were extracted 

in the time domain using detailed wavelet coefficients listed on the TABLE Ⅱ. Principle 

component analysis was then carried out on these features, and the dimensionality 

reduction showed that the data were clustered according to the state of structure, as 

shown in Fig. 5 . 

 
 

 

 

TABLE Ⅱ. COMMONLY USED FEATURES IN CONDITION MONITORING FIELD 

 Features Formula Features Formula Features Formula Features Formula 

P1 
∑ x(n)N

n=1

N
 P6 

∑ (x(n) − P1)3N
n=1

(N − 1)P23
 P11 

1
N

 ∑ x(n)3N
n=1

σ3
 

P16 −∑P(x) ln P(x)

N

n=1

 

P2 √
∑ (x(n) − P1)2N

n=1

N − 1
  P7 

∑ (x(n) − P1)4N
n=1

(N − 1)P24
 P12 

max(x)

+
max(x) −min(x)

2(N − 1)
 

P17 

P4

 
1
N

 ∑ |x(n)|N
n=1

 

P3 max|x(n)| P8 

P42

 
1
N

 ∑ |x(n)|N
n=1

 P13 

min(x)

−
max(x) −min(x)

2(N − 1)
 

P18 

P5

 
1
N

 ∑ |x(n)|N
n=1

 

P4 √∑ (x(n))
2N

n=1

N
  P9 

P52

 
1
N

 ∑ |x(n)|N
n=1

 P14 
R M S

M  e a n
 P19 

∑ (x(n) − P1)2N
n=1

N − 1
 

P5 (
∑ √|x(n)|N

n=1

N
 )

2

 P10 

1
N

 ∑ x(n)4N
n=1

σ4
 

P15 
max(x(n))

R M  S
 P20 

1
N

 ∑ |x(n)|N
n=1

N
   

 

 

TABLE Ⅲ. FEATURES EXTRACTION BASSED ON WAVELET TRASNFORM 

Features Formula Features Formula Features Formula 

W7 √∑ (Y(n))
2N

n=1

N − 1
  W10 √∑ (𝑅𝑦𝑦(𝑙))

2𝐿
𝑙=1

𝐿 − 1
  W8 

W7

 
1
N

 ∑ |Y(n)|N
n=1

 

W11 𝐸[(
𝑌 − 𝐸(𝑌)

𝜎
)

3

] W9 N[𝑃𝑒𝑎𝑘𝑠(𝑅𝑦𝑦)] W12 
𝑊11

 
1
𝐿

 ∑ |𝑅𝑦𝑦(𝑙)|
𝐿
𝑙=1

 

                              𝑐𝐷𝑛(𝑥) ∶ Detailed wavelet coefficients level of n  
𝑌 = 𝑐𝐷1(𝑥),… , 𝑐𝐷3(𝑥)                    
𝑅𝑦𝑦 ∶ 𝐴𝑢𝑡𝑜 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛    
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Figure 5. Dimensionality reduction using PCA. Features extracted from  

structure component 1-4 were reduced into 3 dimensions. 

 

CONCLUSION AND FUTURE WORK 

 

In this study, we proposed a method for real-time measurement of structural 

displacement and their application. We used phase-based optical flow with an optimized 

filter and parallel computing programming  to create a system that can efficiently 

measure displacement in real-time. Furthermore, we validated the feasibility of the 

proposed method in condition monitoring through lab-scale experiments, demonstrating 

its potential application in data driven-based condition monitoring . Future plans include 

conducting research on the application of fast deep learning models for real-world 

applications . 
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