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ABSTRACT

The maintenance of civil infrastructure has become a major challenge for modern
engineers due to its continuous growth, especially buildings and bridges which are
susceptible to structural damage caused by factors like aging, design flaws, and
natural disasters, which can seriously jeopardize their safety, health, and structural
soundness. The conventional inspection methods are not only costly and time-
consuming, but also pose safety hazards, rendering them ineffective. The paper
introduces an automated method for detecting and assessing the severity of damages
in buildings and bridges, which aims to address and mitigate the limitations of
traditional techniques. A collection of 5000 images, ranging in size from 416x416 to
640x640 pixels, were gathered from damaged sites and annotated in polygon
annotation format, with damages categorized into three classes: spalling, corrosion,
and crack. To expand the dataset and enhance the precision of the deep learning
models, data augmentation techniques from the data Albumentation library were
utilized for image processing. Several object-based instance segmentation deep-
learning models, including Yolo V5, V7, V8 Instance Segmentation, and Mask-
RCNN, were trained on 80% of the dataset to obtain the coordinates of the damaged
area's outline and generate masks for the detected damages. The area of these masks
and the percentage of damage severity in an image were computed. The trained
models achieved an accuracy range of approximately 60% to 70%, indicating the
potential effectiveness of instance segmentation deep learning models. The proposed
approach offers a quick and efficient method for determining the severity of structural
damages, resulting in improved safety and decreased maintenance costs for buildings
and bridges. To enhance the accuracy and precision of the model, future research
could include a larger dataset with additional types of structural failures.
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Furthermore, the automated approach can be integrated into mobile monitoring
and inspection devices, such as drones, as well as street camera systems to identify
damaged buildings following natural disasters. An alarm can be triggered based on a
specific threshold value, and appropriate actions can be taken to reduce the response
time for emergency management and improve the structures' resilience to natural
disasters.

INTRODUCTION AND BACKGROUND

Many structures like buildings, bridges, and dams are susceptible to damages due
to environmental conditions like aging, exposure to fire, chemicals, water, and other
factors. These pose a threat to human life, since, they lose their structural integrity
and are likely to collapse [1]. It is also a challenge for municipal governments to keep
track of these efficiently. Hence, detection of these damages and calculation of their
severities can help in determining the functionality and reliability of these structures.
The most widely used methods are semi-automated approaches like collecting data
manually and storing them in a database. But these approaches are time-consuming,
costly, and rely on human intelligence. Advancements in computer-vision and deep
learning have improved the evaluation of surface defects, particularly for detecting
and assessing spalling in reinforced concrete bridges. Abdelkader et al. implemented
a self-adaptive optimization-based method for automated detection and evaluation of
spalling severities, which provided superior segmentation accuracies compared to
conventional methods [1]. An important approach in segmentation is using Gabor
filters, it is one of the most recent developments. It separates an object into distinctive
regions using Principal Component Analysis (PCA) and K-Means Clustering [2]. To
improve the speed and efficiency of damage detection, this paper utilizes deep
learning models for instance segmentation like Mask R-CNN (Regional
Convolutional Neural Networks), Yolo (You Only Look Once) V5, V7, V8 Instance
Segmentation which segments individual objects in a scene. Instance segmentation
is done based on similar attributes of instances such as texture, color, brightness, and
distance index [3]. One promising approach is to use Convolutional Neural Network
(CNN). For example, a study by Vundekode et al. used CNN to identify the types of
damage in building structures [4]. The results showed that CNN was able to identify
the different types of damage with a high degree of accuracy. Another study by
Kandula et al. used a YOLO algorithm to detect, classify, and segment cracks in
concrete structures [5]. Additionally, YOLO architecture was also able to detect
structural damage in video footage with a high degree of accuracy [6]. Mask R-CNN
is the first method to employ target detection and segmentation in one model [7].
Further, the Mask R-CNN model has demonstrated the feasibility of automatically
locating and segmenting cracks and spalling in extreme events using 2D images with
an accuracy between 67.6% and 81.1% [8]. YOLO V5, V7, V8 Instance
Segmentation are real-time object detection systems that operate on a single CNN
and have been designed for end-to-end training [9]. These models are able to segment
various kinds of damages like spalling, corrosion, and cracks by generating outlines



of the damages. These outlines are represented by contour points in Cartesian space,
with a fairly reasonable accuracy. We have also calculated the severity of the
damages by computing the area of damage and percentage of damage present in an
image.

METHODOLOGY

Data Collection and Dataset Formation

The total number of images in the dataset is approximately around 5000 with the
image sizes ranging from 416 x 416 to 768 x 768. Around 20% of the dataset consists
of images from a project site and are annotated and labelled using a tool called
LabelME, in which polygons are used to outline the boundaries of the cracks, spall,
and corrosion. The remaining 80% of the dataset is the combination of existing crack
dataset [10] and corrosion dataset [11]. The area represented by the closed region of
these polygons are the damages in the images. Some examples of the annotated
images are shown in Figure 1. In the images of Figure 1, cracks are represented by
purple, and spall and corrosion are represented by yellow.

In order to increase the size of the dataset, the Albumentation library had been
initially implemented, but Roboflow’s data augmentation tool demonstrated ease of
use and had been consequently implemented for data augmentation [12]. This
technique uses pixel-level transformation and spatial transformation, using flipping,
rotating, and shearing. Spatial level transformation was adopted in the method to pre-
process the training data, as it can alter input images, masks and bounding boxes
simultaneously [13]. This resultant final dataset consists of 13k images, and is split
into train (80%) and test/validation (20%). In the dataset, there are 5240 cracks, 3310
corrosion, and 1041 spall images. The above numbers indicate that the dataset is
biased towards crack and corrosion.

Figure 1: Examples of Annotated images in the Dataset [10] [11]
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Figure 2: Model training process

There are numerous deep learning methods for instance segmentation. For our
study, we used Mask R-CNN, Yolo V5, V7, and V8 Instance segmentation models.
The Yolo models ranged from light-weight models to heavy models.

Mask R-CNN is an extension of Faster R-CNN, which is a region-based CNN,
that returns bounding boxes for each detected object and its respective class label
along with a confidence score [4]. Faster R-CNN model works in two stages: the first
stage consists of two networks, backbone and Region Proposal Network (RPN) and
the second stage consists of the network that predicts bounding boxes and object class
for each of the proposed regions obtained from the first stage. VGG-16 has been used
for the backbone of the model [14].

Yolo V5, V7, V8 Instance segmentation were the other models used for training
and they use a single neural network to process an entire image [5]. The image is
divided into regions and it detects the bounding boxes and outlines of objects for each
region [15][16]. The above models were trained on a V100 Nvidia GPU card.

Damage and Severity Calculation

After image segmentation, we obtain the coordinates of the outline of the damage.
The visual representation of the process used to calculate the area and severity is
illustrated in Figure 3. The coordinates obtained after segmentation can be stored in
a list. Masks are created based on these coordinates. Using pre-defined functions to
calculate masks, the area of each mask is calculated. The total damage area is given
calculated using the image dimensions, i.e., the width times the height of the image.
Lastly, the damage percentage can be calculated.

Total damage area = areal + area2 + ... + areaN (D)
Image area = Size of image width x Size of image height 2)

Damage % = (Total damage area / Image area) x 100 3)
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Figure 3: Process of obtaining damage severity

IMPLEMENTATION

Evaluation of the proposed models

The criteria used to evaluate the accuracy of the models are mainly Precision,
Recall, F1 score, and predicted area. Precision is defined as true positive estimation
over whole estimation, whereas Recall only provides positive estimation. The F1
score tells with what confidence the precision and recall values are scattered. The
mAP (Mean Average Precision) summarizes the model. The following equations
represent how the above parameters are computed.

TP

Precision = “4)
(TP + FP)
TP
Recall = m (5)
F1 Score = 2 X Recall x Precision (6)

(Recall + Precision)

Here, TP and FP stand for True Positive and False positive, while TN and FN
stand for True negative and False negative, respectively [17].

Table I: COMPARISON OF PRECISION, RECALL, F1 SCORE, MAP-50, MAP-95, INFERENCE
SPEED AND AREA PERCENTAGE OF DETECTED DAMAGE

Models Masks Area
(%)
P R F1 mAP- mAP- Speed
50 95 (ms)

Mask R-CNN FPN 0.632  0.318 0.421 0.423 0.254 5.6 49.43

Yolo V5 N 0.566  0.448 0.500  0.423 0.167 1.8 51.67

Instance ) M 0.670  0.538 0.596 0518  0.232 5.9 54.09
Segmentation

X 0.738 0.55 0.630  0.558  0.257 17.7 54.96

Yolo V7 Seg 0.691 0.549  0.611 0.539  0.247 10.9 53.51

Instance

Segmentation SegX 0.687  0.555 0.616  0.550  0.254 17.4 53.48

Yolo V8 N 0.614  0.498 0.549 0506 0.213 1.9 52.83

Instance M 0.713 0559  0.626 0.574  0.251 11.6 53.46
Segmentation

X 0.717  0.568 0.633 0.584  0.264 20.6 54.03




Testing on test images

(b)
Figure 4: (a) Input images for models [10][11], (b) Predicted damages with masks and bounding boxes
drawn on the images

In the dataset, 20% of the images were used for testing. Some of the predictions
made from the models are shown above in Figure 4. The following are depicted in
Figure 4: the first column represents crack detection, the second column represents
spall detection, the third column represents corrosion detection, and the fourth
column represents a combination of spall and corrosion detections.

Failure cases

The trained models are unable to differentiate between cracks, spall, and
corrosion with high confidence score during testing and validation. The major reason
for the low confidence score is due to the insufficient training data as it does not cover
diverse examples. This problem also leads to under-fitting results in real-world
scenarios. For example, only one class of damage is detected, the damage is not
completely detected, or there is a misclassification of the damage class. Some
examples of wrong predictions from our dataset are show below in Figure 5.

Figure 5: Incorrect detections and classifications of damages



DISCUSSION

With the aim of providing a solution for automatically detecting and calculating
severity of three types of structural damages, four deep-learning instance
segmentation model architectures have been evaluated and validated on the dataset
(test/validation dataset). The values for precision, recall, F1 score, and inference
speed were also calculated for the models. The following are observed during
analysis:

1. Data pre-processing challenges:

¢ One of the important factors for the performance of instance segmentation
models is the size of the dataset, and as the size of the dataset increases
with more diverse examples, the validation results can be improved.

e [tis important to balance the ability of a model to generalize new data and
training should be done in such a way that the model does not over fit to
the training data. Moreover, the quantity and quality of images can
drastically affect the performance of a model.

e Collecting and annotating images in a dataset is both time-consuming and
expensive.

e Poor detection and segmentation of images containing spall is due to the
dataset being unbalanced and biased towards crack and corrosion.

2. Inference from results:

¢ Yolo V5x-seg has shown promising results with a precision of 73.8%,
followed by Yolo V8x-seg and Yolo V8m-seg at 71.7% and 71.3%
precision respectively.

e Figure 4 demonstrates the outcomes produced from the 4 trained model
architectures. The heavier models are able to segment better compared to
the lighter models. However, the inference speed of lighter models is
faster (around 2ms) than the heavier models (around 20ms).

e The area of damage after prediction has a slight error which is due to
factors like low confidence score, precision, F1 score, and overall
accuracy. The difference between area calculated from the test dataset and
Yolo V5x-seg is the lowest, indicating that despite the slight errors, the
model has good performance in predicting area of damage.

CONCLUSIONS

In this paper, a dataset of approximately 5000 images was created. These images
consisted of 3 classes of damages: Crack, Spall, and Corrosion. The dataset was split
into 80% for training and 20% for testing and validation. Four different types of
instance segmentation model architectures were trained and tested: Yolo V5, V7, V8
Instance Segmentation, and Mask R-CNN. The models ranged from lightweight
models (like Yolov5n-seg, Yolov8n-seg) for mobile computing to heavier models
(like Yolov5x-seg, Yolov7-segX, Yolov8x-seg) optimized for GPUs. The goal was
to create an automated method for detecting and assessing the severity of damages.



Precision, recall, inference speeds, and area percentage of these models were
compared. The trained models achieved precision in the range of approximately 60%
to 70% and inference speeds ranging from 2ms to 21ms, indicating the potential
effectiveness of instance segmentation deep learning models. Future research could
include a larger dataset with additional types of structural failures, this will result in
better training and also help in increasing the accuracy of detections and precision of
outline of damages. Furthermore, the automated approach can be integrated into
mobile monitoring and inspection devices, such as drones, as well as street camera
systems to identify damaged buildings following natural disasters. An alarm can be
triggered based on a specific threshold value, and appropriate actions can be taken to
reduce the response time for emergency management and improve the structures'
resilience to natural disasters.
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