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ABSTRACT 

 
The maintenance of civil infrastructure has become a major challenge for modern 

engineers due to its continuous growth, especially buildings and bridges which are 
susceptible to structural damage caused by factors like aging, design flaws, and 
natural disasters, which can seriously jeopardize their safety, health, and structural 
soundness. The conventional inspection methods are not only costly and time- 
consuming, but also pose safety hazards, rendering them ineffective. The paper 
introduces an automated method for detecting and assessing the severity of damages 
in buildings and bridges, which aims to address and mitigate the limitations of 
traditional techniques. A collection of 5000 images, ranging in size from 416x416 to 
640x640 pixels, were gathered from damaged sites and annotated in polygon 
annotation format, with damages categorized into three classes: spalling, corrosion, 
and crack. To expand the dataset and enhance the precision of the deep learning 
models, data augmentation techniques from the data Albumentation library were 
utilized for image processing. Several object-based instance segmentation deep- 
learning models, including Yolo V5, V7, V8 Instance Segmentation, and Mask- 
RCNN, were trained on 80% of the dataset to obtain the coordinates of the damaged 
area's outline and generate masks for the detected damages. The area of these masks 
and the percentage of damage severity in an image were computed. The trained 
models achieved an accuracy range of approximately 60% to 70%, indicating the 
potential effectiveness of instance segmentation deep learning models. The proposed 
approach offers a quick and efficient method for determining the severity of structural 
damages, resulting in improved safety and decreased maintenance costs for buildings 
and bridges. To enhance the accuracy and precision of the model, future research 
could include a larger dataset with additional types of structural failures. 

 

Mrinmoy Kumar Das1, Nikhita Rapolu1, Dhathri Meda1, Prafulla Kalapatapu2 and Venkata 
Dilip Kumar Pasupuleti2 
1UG Student, 2Faculty 
École Centrale School of Engineering, Mahindra University, Hyderabad, India 
das20ucse101@mahindrauniversity.edu.in, 
nikhita20ucse115@mahindrauniversity.edu.in, 
dhathri20ucse040@mahindrauniversity.edu.in, 
prafulla.kalapatapu@mahindrauniversity.edu.in, 
venkata.pasupuleti@mahindrauniversity.edu.in 



      Furthermore, the automated approach can be integrated into mobile monitoring 
and inspection devices, such as drones, as well as street camera systems to identify 
damaged buildings following natural disasters. An alarm can be triggered based on a 
specific threshold value, and appropriate actions can be taken to reduce the response 
time for emergency management and improve the structures' resilience to natural 
disasters. 
 
 
INTRODUCTION AND BACKGROUND 
 
      Many structures like buildings, bridges, and dams are susceptible to damages due 
to environmental conditions like aging, exposure to fire, chemicals, water, and other 
factors. These pose a threat to human life, since, they lose their structural integrity 
and are likely to collapse [1]. It is also a challenge for municipal governments to keep 
track of these efficiently. Hence, detection of these damages and calculation of their 
severities can help in determining the functionality and reliability of these structures. 
The most widely used methods are semi-automated approaches like collecting data 
manually and storing them in a database. But these approaches are time-consuming, 
costly, and rely on human intelligence. Advancements in computer-vision and deep 
learning have improved the evaluation of surface defects, particularly for detecting 
and assessing spalling in reinforced concrete bridges. Abdelkader et al. implemented 
a self-adaptive optimization-based method for automated detection and evaluation of 
spalling severities, which provided superior segmentation accuracies compared to 
conventional methods [1]. An important approach in segmentation is using Gabor 
filters, it is one of the most recent developments. It separates an object into distinctive 
regions using Principal Component Analysis (PCA) and K-Means Clustering [2]. To 
improve the speed and efficiency of damage detection, this paper utilizes deep 
learning models for instance segmentation like Mask R-CNN (Regional 
Convolutional Neural Networks), Yolo (You Only Look Once) V5, V7, V8 Instance 
Segmentation which segments individual objects in a scene. Instance segmentation 
is done based on similar attributes of instances such as texture, color, brightness, and 
distance index [3]. One promising approach is to use Convolutional Neural Network 
(CNN). For example, a study by Vundekode et al. used CNN to identify the types of 
damage in building structures [4]. The results showed that CNN was able to identify 
the different types of damage with a high degree of accuracy. Another study by 
Kandula et al. used a YOLO algorithm to detect, classify, and segment cracks in 
concrete structures [5]. Additionally, YOLO architecture was also able to detect 
structural damage in video footage with a high degree of accuracy [6]. Mask R-CNN 
is the first method to employ target detection and segmentation in one model [7]. 
Further, the Mask R-CNN model has demonstrated the feasibility of automatically 
locating and segmenting cracks and spalling in extreme events using 2D images with 
an accuracy between 67.6% and 81.1% [8]. YOLO V5, V7, V8 Instance 
Segmentation are real-time object detection systems that operate on a single CNN 
and have been designed for end-to-end training [9]. These models are able to segment 
various kinds of damages like spalling, corrosion, and cracks by generating outlines 



of the damages. These outlines are represented by contour points in Cartesian space, 
with a fairly reasonable accuracy. We have also calculated the severity of the 
damages by computing the area of damage and percentage of damage present in an 
image. 
 
 
METHODOLOGY 
  
Data Collection and Dataset Formation  
 
      The total number of images in the dataset is approximately around 5000 with the 
image sizes ranging from 416 x 416 to 768 x 768. Around 20% of the dataset consists 
of images from a project site and are annotated and labelled using a tool called 
LabelME, in which polygons are used to outline the boundaries of the cracks, spall, 
and corrosion. The remaining 80% of the dataset is the combination of existing crack 
dataset [10] and corrosion dataset [11]. The area represented by the closed region of 
these polygons are the damages in the images. Some examples of the annotated 
images are shown in Figure 1. In the images of Figure 1, cracks are represented by 
purple, and spall and corrosion are represented by yellow.  
      In order to increase the size of the dataset, the Albumentation library had been 
initially implemented, but Roboflow’s data augmentation tool demonstrated ease of 
use and had been consequently implemented for data augmentation [12]. This 
technique uses pixel-level transformation and spatial transformation, using flipping, 
rotating, and shearing. Spatial level transformation was adopted in the method to pre-
process the training data, as it can alter input images, masks and bounding boxes 
simultaneously [13]. This resultant final dataset consists of 13k images, and is split 
into train (80%) and test/validation (20%). In the dataset, there are 5240 cracks, 3310 
corrosion, and 1041 spall images. The above numbers indicate that the dataset is 
biased towards crack and corrosion.  
 

 

 
 

Figure 1: Examples of Annotated images in the Dataset [10] [11] 
 
 
 
 



 
Model Training 
 

 
 

Figure 2: Model training process 
 
      There are numerous deep learning methods for instance segmentation. For our 
study, we used Mask R-CNN, Yolo V5, V7, and V8 Instance segmentation models. 
The Yolo models ranged from light-weight models to heavy models. 
      Mask R-CNN is an extension of Faster R-CNN, which is a region-based CNN, 
that returns bounding boxes for each detected object and its respective class label 
along with a confidence score [4]. Faster R-CNN model works in two stages: the first 
stage consists of two networks, backbone and Region Proposal Network (RPN) and 
the second stage consists of the network that predicts bounding boxes and object class 
for each of the proposed regions obtained from the first stage. VGG-16 has been used 
for the backbone of the model [14].  
      Yolo V5, V7, V8 Instance segmentation were the other models used for training 
and they use a single neural network to process an entire image [5]. The image is 
divided into regions and it detects the bounding boxes and outlines of objects for each 
region [15][16]. The above models were trained on a V100 Nvidia GPU card.  
 
Damage and Severity Calculation 
 
      After image segmentation, we obtain the coordinates of the outline of the damage. 
The visual representation of the process used to calculate the area and severity is 
illustrated in Figure 3. The coordinates obtained after segmentation can be stored in 
a list. Masks are created based on these coordinates. Using pre-defined functions to 
calculate masks, the area of each mask is calculated. The total damage area is given 
calculated using the image dimensions, i.e., the width times the height of the image. 
Lastly, the damage percentage can be calculated.  
 
                                          𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑚𝑎𝑔𝑒 𝑎𝑟𝑒𝑎 = 𝑎𝑟𝑒𝑎1 + 𝑎𝑟𝑒𝑎2 + … + 𝑎𝑟𝑒𝑎𝑁                                    (1)   

 
                                     𝐼𝑚𝑎𝑔𝑒 𝑎𝑟𝑒𝑎 = 𝑆𝑖𝑧𝑒 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡h × 𝑆𝑖𝑧𝑒 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒 he𝑖𝑔h𝑡                 (2)     
 
                                     𝐷𝑎𝑚𝑎𝑔𝑒 % = (𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑚𝑎𝑔𝑒 𝑎𝑟𝑒𝑎 / 𝐼𝑚𝑎𝑔𝑒 𝑎𝑟𝑒𝑎) × 100                         (3) 
 



 
 

Figure 3: Process of obtaining damage severity 

 
 
IMPLEMENTATION 
  
Evaluation of the proposed models 
 
      The criteria used to evaluate the accuracy of the models are mainly Precision, 
Recall, F1 score, and predicted area. Precision is defined as true positive estimation 
over whole estimation, whereas Recall only provides positive estimation. The F1 
score tells with what confidence the precision and recall values are scattered. The 
mAP (Mean Average Precision) summarizes the model. The following equations 
represent how the above parameters are computed. 

 

                                                               𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

(்௉ ା ி௉)
                                                           (4) 

 

                                  𝑅𝑒𝑐𝑎𝑙𝑙 =
்௉

(்௉ ା ிே)
                                                      (5) 

 

                                  𝐹1 𝑆𝑐𝑜𝑟𝑒 =
ଶ  × ோ௘௖௔௟௟ × ௉௥௘௖௜௦௜௢௡

(ோ௘௖௔௟௟ ା ௉௥௘௖௜௦௜௢௡)
                                           (6) 

 

      Here, TP and FP stand for True Positive and False positive, while TN and FN 
stand for True negative and False negative, respectively [17]. 
 
 

Table I: COMPARISON OF PRECISION, RECALL, F1 SCORE, MAP-50, MAP-95, INFERENCE 
SPEED AND AREA PERCENTAGE OF DETECTED DAMAGE  

 
Models Masks Area 

(%) P R F1 mAP-
50 

mAP-
95 

Speed 
(ms) 

Mask R-CNN FPN 0.632 0.318 0.421 0.423 0.254 5.6 49.43 

         

Yolo V5 
Instance 
Segmentation 

N 0.566 0.448 0.500 0.423 0.167 1.8 51.67 

M 0.670 0.538 0.596 0.518 0.232 5.9 54.09 

X 0.738 0.55 0.630 0.558 0.257 17.7 54.96 

         

Yolo V7 
Instance 
Segmentation 

Seg 0.691 0.549 0.611 0.539 0.247 10.9 53.51 

SegX 0.687 0.555 0.616 0.550 0.254 17.4 53.48 

         

Yolo V8 
Instance 
Segmentation 

N 0.614 0.498 0.549 0.506 0.213 1.9 52.83 

M 0.713 0.559 0.626 0.574 0.251 11.6 53.46 

X 0.717 0.568 0.633 0.584 0.264 20.6 54.03 

Obtain coordinates Store coordinates Object masking Total area



Testing on test images 
 

  
         (a)                                                                             (b) 

Figure 4: (a) Input images for models [10][11], (b) Predicted damages with masks and bounding boxes 
drawn on the images 

 
      In the dataset, 20% of the images were used for testing. Some of the predictions 
made from the models are shown above in Figure 4. The following are depicted in 
Figure 4: the first column represents crack detection, the second column represents 
spall detection, the third column represents corrosion detection, and the fourth 
column represents a combination of spall and corrosion detections. 
 
Failure cases 

 
      The trained models are unable to differentiate between cracks, spall, and 
corrosion with high confidence score during testing and validation. The major reason 
for the low confidence score is due to the insufficient training data as it does not cover 
diverse examples. This problem also leads to under-fitting results in real-world 
scenarios. For example, only one class of damage is detected, the damage is not 
completely detected, or there is a misclassification of the damage class. Some 
examples of wrong predictions from our dataset are show below in Figure 5. 
 

 
  

Figure 5: Incorrect detections and classifications of damages 
 



DISCUSSION 
 
      With the aim of providing a solution for automatically detecting and calculating 
severity of three types of structural damages, four deep-learning instance 
segmentation model architectures have been evaluated and validated on the dataset 
(test/validation dataset). The values for precision, recall, F1 score, and inference 
speed were also calculated for the models. The following are observed during 
analysis: 
 
1. Data pre-processing challenges: 

 One of the important factors for the performance of instance segmentation 
models is the size of the dataset, and as the size of the dataset increases 
with more diverse examples, the validation results can be improved.  

 It is important to balance the ability of a model to generalize new data and 
training should be done in such a way that the model does not over fit to 
the training data. Moreover, the quantity and quality of images can 
drastically affect the performance of a model.  

 Collecting and annotating images in a dataset is both time-consuming and 
expensive. 

 Poor detection and segmentation of images containing spall is due to the 
dataset being unbalanced and biased towards crack and corrosion. 
 

2. Inference from results: 
 Yolo V5x-seg has shown promising results with a precision of 73.8%, 

followed by Yolo V8x-seg and Yolo V8m-seg at 71.7% and 71.3% 
precision respectively. 

 Figure 4 demonstrates the outcomes produced from the 4 trained model 
architectures. The heavier models are able to segment better compared to 
the lighter models. However, the inference speed of lighter models is 
faster (around 2ms) than the heavier models (around 20ms). 

 The area of damage after prediction has a slight error which is due to 
factors like low confidence score, precision, F1 score, and overall 
accuracy. The difference between area calculated from the test dataset and 
Yolo V5x-seg is the lowest, indicating that despite the slight errors, the 
model has good performance in predicting area of damage. 

 
 
CONCLUSIONS 
 
      In this paper, a dataset of approximately 5000 images was created. These images 
consisted of 3 classes of damages: Crack, Spall, and Corrosion. The dataset was split 
into 80% for training and 20% for testing and validation. Four different types of 
instance segmentation model architectures were trained and tested: Yolo V5, V7, V8 
Instance Segmentation, and Mask R-CNN. The models ranged from lightweight 
models (like Yolov5n-seg, Yolov8n-seg) for mobile computing to heavier models 
(like Yolov5x-seg, Yolov7-segX, Yolov8x-seg) optimized for GPUs. The goal was 
to create an automated method for detecting and assessing the severity of damages. 



Precision, recall, inference speeds, and area percentage of these models were 
compared. The trained models achieved precision in the range of approximately 60% 
to 70% and inference speeds ranging from 2ms to 21ms, indicating the potential 
effectiveness of instance segmentation deep learning models. Future research could 
include a larger dataset with additional types of structural failures, this will result in 
better training and also help in increasing the accuracy of detections and precision of 
outline of damages. Furthermore, the automated approach can be integrated into 
mobile monitoring and inspection devices, such as drones, as well as street camera 
systems to identify damaged buildings following natural disasters. An alarm can be 
triggered based on a specific threshold value, and appropriate actions can be taken to 
reduce the response time for emergency management and improve the structures' 
resilience to natural disasters.  
 
 
REFERENCES 
 
1. Mohammed Abdelkader, E., Moselhi, O., Marzouk, M., & Zayed, T. (2021). Entropy-based 

automated method for detection and assessment of spalling severities in reinforced concrete 
bridges. Journal of Performance of Constructed Facilities, 35(1), 04020132. 

2. Hoang, N. D. (2020). Image processing-based spall object detection using Gabor filter, texture 
analysis, and adaptive moment estimation (Adam) optimized logistic regression models. 
Advances in Civil Engineering, 2020. 

3. Hafiz, A. M., & Bhat, G. M. (2020). A survey on instance segmentation: state of the art. 
International journal of multimedia information retrieval, 9(3), 171-189. 

4. Vundekode, N. R., Kalapatapu, P., & Pasupuleti, V. D. K. (2021, January). A study on vision 
based method for damage detection in structures. In European Workshop on Structural Health 
Monitoring: Special Collection of 2020 Papers-Volume 1 (pp. 96-105). Cham: Springer 
International Publishing.  

5. Kandula, H., Koduri, H. R., Kalapatapu, P., & Pasupuleti, V. D. K. (2022, June). Deep 
Convolutional Neural Network for Segmentation and Classification of Structural Multi-branch 
Cracks. In European Workshop on Structural Health Monitoring: EWSHM 2022-Volume 2 (pp. 
177-185). Cham: Springer International Publishing. 

6. Kadarla, S., Beeram, S. K., Kalapatapu, P., & Pasupuleti, V. D. K. (2021, January). Concrete 
crack detection from video footage for structural health monitoring. In European Workshop on 
Structural Health Monitoring: Special Collection of 2020 Papers-Volume 1 (pp. 79-88). Cham: 
Springer International Publishing. 

7. He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE 
international conference on computer vision (pp. 2961-2969). 

8. Bai, M., & Sezen, H. (2021, January). Detecting cracks and spalling automatically in extreme 
events by end-to-end deep learning frameworks. In ISPRS Annals of Photogrammetry and Remote 
Sensing Spatial Information Science, XXIV ISPRS Congress, International Society for 
Photogrammetry and Remote Sensing. 

9. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-
time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition (pp. 779-788) 

10. University. (2022, December). Crack Dataset [Open Source Dataset]. Roboflow Universe. 
https://universe.roboflow.com/university-bswxt/crack-bphdr. 

11. ComputerVision. (2023, April). Corrosion inspection Dataset [Open Source Dataset]. Roboflow 
Universe. https://universe.roboflow.com/computervision-a8zib/corrosion-inspection  

12. Dwyer, B., Nelson, J. (2022), Solawetz, J., et. al. Roboflow (Version 1.0) [Software]. Available 
from https://roboflow.com. computer vision. 

13. A. Buslaev, A. Parinov, E. Khvedchenya, V.I. Iglovikov and A.A. Kalinin, 2018. Albumentations: 
fast and flexible image augmentations, ArXiv, e-print = 1809.06839 



14. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image 
recognition. arXiv preprint arXiv:1409.1556. 

15. Thuan, D. (2021). Evolution of Yolo algorithm and Yolov5: The State-of-the-Art object detention 
algorithm. 

16. Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M. (2022). YOLOv7: Trainable bag-of-freebies 
sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696. 

17. Goutte, C., & Gaussier, E. (2005, March). A probabilistic interpretation of precision, recall and 
F-score, with implication for evaluation. In European conference on information retrieval (pp. 
345-359). Springer, Berlin, Heidelberg.  
 
 




