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ABSTRACT 
 

Cracks in civil infrastructures are an important sign of structural degradation and 
may indicate the inception of catastrophic failure. Existing image-based crack detection 
techniques face challenges when it comes to the complex background scenes. These 
irrelevant background interferences are common in practice and may trigger false 
alarms in crack detection. To eliminate their influence, hyperspectral imaging is 
employed in this study, which captures hundreds of spectral reflectance values in a pixel 
in the visible and near-infrared region. Compared with the conventional greyscale/RGB 
images which are limited to one/three wide spectral bands (red, green, blue), 
hyperspectral imaging can therefore provide more rich spectral information for crack 
detection/distinguish cracks from other background interferences. Due to the high 
correlations in hyperspectral image data, this study proposed a hyperspectral crack 
detection method using the low rank representation-based algorithm. Moreover, a 
locality constraint together with the dictionary learning process is incorporated into the 
proposed method to train a multi-class classifier. The built classification model is tested 
based on a real-world hyperspectral imaging dataset, which contains eight different 
surface objects in total. The trained classifier achieves an overall accuracy of 92.1%. 
The results show that the proposed method can predict cracks and other materials under 
complex scenes. 
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INTRODUCTION 

Cracks are a common issue in civil infrastructures and can cause material 

discontinuities, reduce local stiffness, and indicate potential structural failure [1]. While 

vibration-based methods are widely used for damage detection [2], they are not effective 

for identifying local damage such as cracks. To manage the local cracks, traditional 

visual inspection by experts is commonly adopted. The visual inspection completely 

depends on the knowledge and experience of trained personnel; hence, the whole 

process is often time-consuming, labor-intensive, and prone to human errors. In addition, 

in some regions of the target structure, it is difficult for human beings to gain access [3, 

4]. Therefore, timely and accurate crack monitoring is crucial for ensuring structural 

safety. 

To solve these problems, image-based crack detection using computer vision 

algorithms has gained popularity due to its low cost, high efficiency, and flexibility [5, 

6]. Moreover, implementing robots or unmanned aerial vehicles (UAVs) as inspection 

platforms further automates the image-capturing process [7]. Up to now, a number of 

image-based crack detection methods have been developed, which can be broadly 

classified into two categories, namely image processing techniques and machine 

learning methods. 

For image processing techniques, they include edge detection methods [8, 9], image 

binarization methods [10], percolation models , and mathematical morphology-based 

methods [11]. These methods magnify the visibility of cracks within images. Abdel et 

al. [12] compared four edge detection algorithms (fast Haar transform (FHT), fast 

Fourier transform (FHT), Sobel and Canny edge detection) and found that the fast Haar 

transform (FHT) was the most reliable for crack detection. Although image processing 

techniques have shown good performance in comparison to manual crack detection, 

they may not perform well in complex environments with noise interference and 

complex backgrounds, leading to lower detection accuracy. 

Another kind of autonomous method for crack detection is the latest machine 

learning methods, particularly deep learning (DL) methods [13, 14]. These techniques 

rely on a training set of images to learn and identify the distinguishing characteristics of 

cracks. Among them, Cha et al. [15] first developed a deep convolutional neural 

network (D-CNN) model trained on 40,000 manually annotated images of concrete 

surfaces with dimensions of 256  256  3 pixels to detect the presence or absence of 

cracks. Chen and Jahanshahi [16] trained a D-CNN augmented with a Naive Bayes 

classifier on 5,326 manually annotated images of size 120  120  3 pixels that were 

extensively augmented to increase the dataset size to over 250,000 images. In these 

methods, the detected cracks are highlighted with bounding boxes. Further geometric 

information, such as the length, width and the area of the detected cracks, are not 

provided. Subsequently, some DL-based pixel-level crack detection methods have been 

developed [17, 18].  By using use deep CNNs, these methods can segment cracks in 

images or videos at the pixel level. The segmentation results are more precise, allowing 

for the quantification of parameters such as crack length and width.  

The above studies have made great progress in the crack detection using 

conventional grayscale or RGB images. However, they may still face challenges under 

real-world conditions. In practice, complex surface scenes and background interferences 

such as water stains, vegetation, parking lines, and oil stains may cause false alarms and 



pseudo cracks. This leads to a generalization issue for classification methods as a well-

trained classifier can overfit and fail to generalize to other image scenes. 

To eliminate their influence, hyperspectral imaging (HSI) is introduced in this study, 

which captures hundreds of spectral reflectance values in a pixel in the visible and near-

infrared region. Compared with the conventional greyscale/RGB images which are 

limited to one/three wide spectral bands (red, green, blue), hyperspectral imaging can 

therefore provide more rich spectral information to distinguish cracks from other 

background interferences. Due to the high correlations in hyperspectral image data, this 

study proposed a hyperspectral crack detection method using the low rank 

representation-based algorithm. As a result, an eight-class classification model could be 

built based on the proposed method, which includes “Concrete”, “Asphalt”, “Crack”, 

“Oil stains”, “Artificial marking”, “Green vegetation”, “Water stains”, and “Dry 

vegetation”. 

METHODOLOGY 

Low-Rank Representation in HSI 

Given an HSI image, the 3D HSI data 𝐈 ∈ ℝ𝐵×𝑛1×𝑛2 can be built, where 𝐵 denotes

the number of spectral bands and 𝑛1 × 𝑛2 denotes the number of pixels in the spatial 

domain. Then, the 3D HSI data 𝐈 is rearranged into a matrix 𝐘 = [𝒚1, 𝒚2, ⋯ , 𝒚𝑁] ∈
ℝ𝐵×𝑁, where 𝑁 = 𝑛1 × 𝑛2 and 𝒚𝑖 ∈ ℝ𝐵×1 denotes reflectance spectrum of the 𝑖𝑡ℎ test

pixel. With an overcomplete spectral dictionary 𝐃, each test pixel 𝒚𝑖 can be represented 

as a linear combination of the atoms in the dictionary. As such, 𝐘 could be expressed as 

𝐘 = 𝐃𝐙 + 𝐄  (1) 

where 𝐃 = [𝐃1, 𝐃2, ⋯ , 𝐃𝐾] ∈ ℝ𝐵×𝑚 denotes a spectral dictionary formed by the HSI

pixels from all 𝐾 classes, and 𝐃𝑖  is sub-dictionary corresponding to the class 𝑖; 𝐙 =
[𝒛1, 𝒛2, ⋯ , 𝒛𝑁] denotes the representation matrix, and 𝐄  represents the sparse noise

component. If the test pixel 𝒚𝑖  belongs to class 𝑐, it is assumed that 𝒚𝑖  can only be 

described by the sub-dictionary 𝐃𝑐 of class 𝑐. As a result, the non-zero elements in 𝒛𝑖 

are those corresponding to the category 𝒚𝑖  belongs to. Therefore, the resulting 

representation matrix 𝐙 reveals the critical class information, which could be used for 

class prediction. 

To address Eq. (1), more constraints are needed for characterizing matrices 𝐙 and 𝐄. 

Ideally, if atoms in dictionary 𝐃 are rearranged according to the order of class, the 

optimal representation matrix 𝐙 would have a classwise block-diagonal structure. Then 

Eq. (1) could be solved by the following low-rank representation (LRR) problem:  

min
𝐙,𝐄

 ‖𝐙‖∗ + 𝜆‖𝐄‖1

s.t. 𝐘 = 𝐃𝐙 + 𝐄 (2) 

where ‖∙‖∗ denotes the nuclear norm of a matrix, which is a good surrogate of the rank

minimization problem, and ‖∙‖1 denotes the ℓ1 norm; 𝜆 > 0 is the trade-off parameter

that balances the weights of the rank term and the noise component. 



Dictionary Learning 

In LRR, dictionary quality is of great importance for classification, and it will 

influence the discriminative power of the representation 𝐙. Instead of employing the 

whole training data set as the dictionary, this study learns a dictionary behaving well in 

the training set. The mathematical model for dictionary learning can be described as 

follows: 

min
𝐙,𝐃,𝐄

 ‖𝐙‖∗ + 𝜆‖𝐄‖1 +
𝛾

2
‖𝐃‖𝐹

2

s.t. 𝐗 = 𝐃𝐙 + 𝐄 (3) 

where 𝐗 denotes the training data set, and 
𝛾

2
‖𝐃‖𝐹

2  is to avoid scale change during the 

dictionary learning process. 

Although LRR has a powerful ability to capture the global structure of the given 

HSI data, the local structure between two pixels, which is also helpful in classifying HSI, 

is ignored by LRR [19, 20]. Therefore, a locality constraint term, which explicitly 

utilizes the spectral similarity of pixels, is employed in this study to improve the 

performance of the original LRR model. The locality constraint as a penalty term for 

LRR is introduced as 

‖𝐌 ⨀ 𝐙‖1         (4) 

where ⨀ denotes the Hadamard product, and 𝑀𝑖,𝑗 is the distance between the 𝑖𝑡ℎ and

𝑗𝑡ℎ  pixels. Finally, the locality constraint term is integrated into Eq. (3) to learn a

discriminative dictionary and representation as follows, 

min
𝐙,𝐃,𝐄

 ‖𝐙‖∗ + 𝜆‖𝐄‖1 + 𝛼‖𝐌 ⨀ 𝐙‖1 +
𝛾

2
‖𝐃‖𝐹

2

s.t. 𝐗 = 𝐃𝐙 + 𝐄 (5) 

where 𝛼 controls the contribution of the locality constraint term. Associating locality 

constraint in the training process, a compact and discriminative dictionary 𝐃 can be 

learned from all training data by Eq. (5).  

Classification and Crack Detection 

Using the dictionary learned from Eq. (5), the low-rank representation matrix 𝐙𝑇𝑒𝑠𝑡

of test HSI data 𝐘 could be obtained by solving Eq. (2).  

Based on the representation 𝐙𝑇𝑟𝑎𝑖𝑛  of training data 𝐗 and class label matrix 𝐇, 

multivariate ridge regression model is designed to obtain a linear classifier 𝐋∗:

𝐋∗ = arg min
𝐌

‖𝐇 − 𝐋𝐙𝑇𝑟𝑎𝑖𝑛‖
𝐹

2
+ 𝜂‖𝐋‖𝐹

2  (6) 

where 𝜂 is the weight of the regularization term. 

Then the class label for the test pixel 𝑖 is determined by 



𝑘∗ = arg max
𝑘

𝐋∗𝒛𝑖
𝑇𝑒𝑠𝑡  (7) 

where 𝑘∗ is the predicted label corresponding to the classifier with the largest output.

RESULTS 

Datasets 

The hyperspectral images of pavement cracks are obtained from a public crack 

dataset [21]. This public dataset consists of 50 hyperspectral images of cracks in the 

concrete or asphalt surface, captured by a UAV-based HSI system (Figure 1). 

The HSI camera captures 139 narrow spectral bands (𝐵 = 139) in wavelengths 

ranging from 450 nm to 950 nm (most of the VNIR region). The spectral resolution is 

8 nm in each band, and the spatial resolution is 50  50 pixels. After calibration, a 

calibrated 3D reflectance hyperspectral cube is built for each image. The 3D HSI data 

cube provides both spatial and spectral information, and holds some information that 

human eyes cannot see without the hyperspectral image. It comprises 139 spectral bands, 

50 pixels in length and 50 pixels in width. Each pixel in HSI image contains a sampled 

spectrum that could be used to recognize and classify different materials. Consequently, 

the size of hyperspectral cube is 50  50  139. 

In this study, a total of 50 hyperspectral images are used. All images contain hairline 

or apparent cracks. Among them, 34 crack images are for concrete surfaces, and 16 are 

for asphalt surfaces. Considering the complex background interference in the real 

environment, these 50 crack images are disturbed by multiple types of noise, including 

parking lines, water stains, oil stains, green and dry vegetation. 

To train a supervised classification model, a “hyperspectral reflectance library” of 

different material is required first. After feature extraction, a total of eight different 

classes are considered during the pixel extraction process, including "Asphalt” "Crack", 

"Oil stains", "Artificial marking", "Green vegetation", "Water stains", "Dry vegetation" 

and "Concrete", respectively. 

For each class, 25% of labeled HSI pixels from the dataset 𝑨 are randomly chosen 

to be the training set, and the remaining 75% are used for testing. That is, each class 

consists of 50 data points for training and 150 data points for testing. The number of 

dictionary atoms for each class is set to be 20. 

(a) (b) 

Figure 1. (a) the Cubert FireflEYE S185 snapshot camera for HSI; (b) the UAV-based HSI system [22]. 



Classification Performance 

After the training process is completed, the performance of the trained model in 

accurately predicting class labels is assessed by the testing set. By comparing the 

predicted class labels and the true class labels of the testing set, a confusion matrix C 

can be generated, as Figure 2 shows. 

From the confusion matrix, true positive (TP), true negative (TN), false positive (FP) 

and false negative (FN) can be determined for each class. Then several commonly used 

metrics can be generated to evaluate the performance of the classification model, which 

are defined as  

𝐴𝑐 =
∑ C𝑖𝑖

𝐾
𝑖=1

∑ ∑ C𝑖𝑗
𝐾
𝑗=1

𝐾
𝑖=1

× 100% 
(8) 

𝑝 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
; 𝑟 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
; 𝐹1 =

2×𝑝×𝑟

𝑝+𝑟

where 𝐴𝑐  represents the overall accuracy. 𝑝 and 𝑟 represent the precision and recall, 

respectively. Since the precision competes against the recall in any model, F1 score, 

acting as a comprehensive index, tends to better gauge the classification performance. 

Figure 2. Confusion matrix of HSI pixels for eight classes. (Class 1: Asphalt; Class 2: Crack; Class 3: 

Oil; Class 4: Artificial marking; Class 5: Green vegetation; Class 6: Water; Class 7: Dry vegetation; 

Class 8: Concrete) 

Precision

Recall



In this study, the trained classification model resulted in an overall accuracy of 

92.1%, that is, 92.1% HSI pixels in testing set are correctly classified. The averaged 

precision, recall, and F1 scores for all 8 classes are 92.2%, 92.1%, and 91.9%, 

respectively. It reveals that, in general, the trained model achieves satisfactory 

classification performance on all eight different classes. In addition, the general 

equilibrium of average precision and recall also indicates that the trained model is 

balanced to both positive and negative samples for each class. In summary, the results 

show that the proposed method can predict cracks and other materials under complex 

scenes. 

CONCLUSIONS 

This study focuses on the application of HSI for crack detection and identification 

of surface materials under complex scenes. The proposed method uses a low-rank 

representation-based approach to build a multi-class classifier for the prediction of 

cracks and other surface materials. The method has some unique characteristics, 

including the use of dictionary learning process, which reduces redundancy and 

increases discriminative ability for HSI classification. The introduction of a locality 

constraint term encourages similar HSI pixels to have similar representations, leading 

to high classification accuracy. The trained classification model was tested on a real-

world HSI crack dataset captured from the UAV. The results showed that the trained 

model achieved satisfactory classification performance and high efficiency, with an 

overall accuracy of 92.1%.  
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