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ABSTRACT

Cracks in civil infrastructures are an important sign of structural degradation and
may indicate the inception of catastrophic failure. Existing image-based crack detection
techniques face challenges when it comes to the complex background scenes. These
irrelevant background interferences are common in practice and may trigger false
alarms in crack detection. To eliminate their influence, hyperspectral imaging is
employed in this study, which captures hundreds of spectral reflectance values in a pixel
in the visible and near-infrared region. Compared with the conventional greyscale/RGB
images which are limited to one/three wide spectral bands (red, green, blue),
hyperspectral imaging can therefore provide more rich spectral information for crack
detection/distinguish cracks from other background interferences. Due to the high
correlations in hyperspectral image data, this study proposed a hyperspectral crack
detection method using the low rank representation-based algorithm. Moreover, a
locality constraint together with the dictionary learning process is incorporated into the
proposed method to train a multi-class classifier. The built classification model is tested
based on a real-world hyperspectral imaging dataset, which contains eight different
surface objects in total. The trained classifier achieves an overall accuracy of 92.1%.
The results show that the proposed method can predict cracks and other materials under
complex scenes.
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INTRODUCTION

Cracks are a common issue in civil infrastructures and can cause material
discontinuities, reduce local stiffness, and indicate potential structural failure [1]. While
vibration-based methods are widely used for damage detection [2], they are not effective
for identifying local damage such as cracks. To manage the local cracks, traditional
visual inspection by experts is commonly adopted. The visual inspection completely
depends on the knowledge and experience of trained personnel; hence, the whole
process is often time-consuming, labor-intensive, and prone to human errors. In addition,
in some regions of the target structure, it is difficult for human beings to gain access [3,
4]. Therefore, timely and accurate crack monitoring is crucial for ensuring structural
safety.

To solve these problems, image-based crack detection using computer vision
algorithms has gained popularity due to its low cost, high efficiency, and flexibility [5,
6]. Moreover, implementing robots or unmanned aerial vehicles (UAVS) as inspection
platforms further automates the image-capturing process [7]. Up to now, a number of
image-based crack detection methods have been developed, which can be broadly
classified into two categories, namely image processing techniques and machine
learning methods.

For image processing techniques, they include edge detection methods [8, 9], image
binarization methods [10], percolation models , and mathematical morphology-based
methods [11]. These methods magnify the visibility of cracks within images. Abdel et
al. [12] compared four edge detection algorithms (fast Haar transform (FHT), fast
Fourier transform (FHT), Sobel and Canny edge detection) and found that the fast Haar
transform (FHT) was the most reliable for crack detection. Although image processing
techniques have shown good performance in comparison to manual crack detection,
they may not perform well in complex environments with noise interference and
complex backgrounds, leading to lower detection accuracy.

Another kind of autonomous method for crack detection is the latest machine
learning methods, particularly deep learning (DL) methods [13, 14]. These techniques
rely on a training set of images to learn and identify the distinguishing characteristics of
cracks. Among them, Cha et al. [15] first developed a deep convolutional neural
network (D-CNN) model trained on 40,000 manually annotated images of concrete
surfaces with dimensions of 256 x 256 x 3 pixels to detect the presence or absence of
cracks. Chen and Jahanshahi [16] trained a D-CNN augmented with a Naive Bayes
classifier on 5,326 manually annotated images of size 120 x 120 x 3 pixels that were
extensively augmented to increase the dataset size to over 250,000 images. In these
methods, the detected cracks are highlighted with bounding boxes. Further geometric
information, such as the length, width and the area of the detected cracks, are not
provided. Subsequently, some DL-based pixel-level crack detection methods have been
developed [17, 18]. By using use deep CNNs, these methods can segment cracks in
images or videos at the pixel level. The segmentation results are more precise, allowing
for the quantification of parameters such as crack length and width.

The above studies have made great progress in the crack detection using
conventional grayscale or RGB images. However, they may still face challenges under
real-world conditions. In practice, complex surface scenes and background interferences
such as water stains, vegetation, parking lines, and oil stains may cause false alarms and



pseudo cracks. This leads to a generalization issue for classification methods as a well-
trained classifier can overfit and fail to generalize to other image scenes.

To eliminate their influence, hyperspectral imaging (HSI) is introduced in this study,
which captures hundreds of spectral reflectance values in a pixel in the visible and near-
infrared region. Compared with the conventional greyscale/RGB images which are
limited to one/three wide spectral bands (red, green, blue), hyperspectral imaging can
therefore provide more rich spectral information to distinguish cracks from other
background interferences. Due to the high correlations in hyperspectral image data, this
study proposed a hyperspectral crack detection method using the low rank
representation-based algorithm. As a result, an eight-class classification model could be
built based on the proposed method, which includes “Concrete”, “Asphalt”, “Crack”,
“Oil stains”, “Artificial marking”, “Green vegetation”, “Water stains”, and “Dry
vegetation”.

METHODOLOGY
Low-Rank Representation in HSI

Given an HSI image, the 3D HSI data I € RE*™1*"2 can be built, where B denotes
the number of spectral bands and n, X n, denotes the number of pixels in the spatial
domain. Then, the 3D HSI data I is rearranged into a matrix Y = [y, ¥, ", ¥n] €
REXN 'where N = n; x n, and y; € RE** denotes reflectance spectrum of the i*" test
pixel. With an overcomplete spectral dictionary D, each test pixel y; can be represented
as a linear combination of the atoms in the dictionary. As such, Y could be expressed as

Y=DZ+E (1)

where D = [D,,D,, ---, D] € RE*™ denotes a spectral dictionary formed by the HSI
pixels from all K classes, and D; is sub-dictionary corresponding to the class i; Z =
[z,,2,,:-,zy] denotes the representation matrix, and E represents the sparse noise
component. If the test pixel y; belongs to class c, it is assumed that y; can only be
described by the sub-dictionary D, of class c. As a result, the non-zero elements in z;
are those corresponding to the category y; belongs to. Therefore, the resulting
representation matrix Z reveals the critical class information, which could be used for
class prediction.

To address Eq. (1), more constraints are needed for characterizing matrices Z and E.
Ideally, if atoms in dictionary D are rearranged according to the order of class, the
optimal representation matrix Z would have a classwise block-diagonal structure. Then
Eqg. (1) could be solved by the following low-rank representation (LRR) problem:

rrZIiEn ZI|. + AllE[[,
st.Y=DZ+E )
where ||-||.. denotes the nuclear norm of a matrix, which is a good surrogate of the rank

minimization problem, and ||-||; denotes the £, norm; A > 0 is the trade-off parameter
that balances the weights of the rank term and the noise component.



Dictionary Learning

In LRR, dictionary quality is of great importance for classification, and it will
influence the discriminative power of the representation Z. Instead of employing the
whole training data set as the dictionary, this study learns a dictionary behaving well in
the training set. The mathematical model for dictionary learning can be described as
follows:

. |4 2
min |Z|[.. + A|[E]l; + > ID|%
st.X=DZ+E (3)

where X denotes the training data set, and g ID||% is to avoid scale change during the

dictionary learning process.

Although LRR has a powerful ability to capture the global structure of the given
HSI data, the local structure between two pixels, which is also helpful in classifying HSI,
is ignored by LRR [19, 20]. Therefore, a locality constraint term, which explicitly
utilizes the spectral similarity of pixels, is employed in this study to improve the
performance of the original LRR model. The locality constraint as a penalty term for
LRR is introduced as

IM O Z|l, (4)

where © denotes the Hadamard product, and M; ; is the distance between the i*" and

jt" pixels. Finally, the locality constraint term is integrated into Eq. (3) to learn a
discriminative dictionary and representation as follows,

. |4
min [IZ[l. + AlIEl, + alM © Zll; + D3
st.X=DZ+E (5)
where a controls the contribution of the locality constraint term. Associating locality

constraint in the training process, a compact and discriminative dictionary D can be
learned from all training data by Eq. (5).

Classification and Crack Detection
Using the dictionary learned from Eqg. (5), the low-rank representation matrix Z,;
of test HSI data Y could be obtained by solving Eq. (2).

Based on the representation Zr,.,;, Of training data X and class label matrix H,
multivariate ridge regression model is designed to obtain a linear classifier L*:

L = arg mNi[n”H — LZTml-n”i + n||L||2 (6)

where 7 is the weight of the regularization term.
Then the class label for the test pixel i is determined by



k* = argmax Lizlest (7

where k* is the predicted label corresponding to the classifier with the largest output.

RESULTS
Datasets

The hyperspectral images of pavement cracks are obtained from a public crack
dataset [21]. This public dataset consists of 50 hyperspectral images of cracks in the
concrete or asphalt surface, captured by a UAV-based HSI system (Figure 1).

The HSI camera captures 139 narrow spectral bands (B = 139) in wavelengths
ranging from 450 nm to 950 nm (most of the VNIR region). The spectral resolution is
8 nm in each band, and the spatial resolution is 50 x 50 pixels. After calibration, a
calibrated 3D reflectance hyperspectral cube is built for each image. The 3D HSI data
cube provides both spatial and spectral information, and holds some information that
human eyes cannot see without the hyperspectral image. It comprises 139 spectral bands,
50 pixels in length and 50 pixels in width. Each pixel in HSI image contains a sampled
spectrum that could be used to recognize and classify different materials. Consequently,
the size of hyperspectral cube is 50 x 50 x 139.

In this study, a total of 50 hyperspectral images are used. All images contain hairline
or apparent cracks. Among them, 34 crack images are for concrete surfaces, and 16 are
for asphalt surfaces. Considering the complex background interference in the real
environment, these 50 crack images are disturbed by multiple types of noise, including
parking lines, water stains, oil stains, green and dry vegetation.

To train a supervised classification model, a “hyperspectral reflectance library” of
different material is required first. After feature extraction, a total of eight different
classes are considered during the pixel extraction process, including "Asphalt” "Crack",
"Oil stains”, "Artificial marking", "Green vegetation", "Water stains", "Dry vegetation"
and "Concrete", respectively.

For each class, 25% of labeled HSI pixels from the dataset A are randomly chosen
to be the training set, and the remaining 75% are used for testing. That is, each class
consists of 50 data points for training and 150 data points for testing. The number of
dictionary atoms for each class is set to be 20.

(a)

Figure 1. (a) the Cubert FireflEYE S185 snapshot camera for HSI; (b) the UAV-based HSI system [22].



Classification Performance

After the training process is completed, the performance of the trained model in
accurately predicting class labels is assessed by the testing set. By comparing the
predicted class labels and the true class labels of the testing set, a confusion matrix C
can be generated, as Figure 2 shows.

From the confusion matrix, true positive (TP), true negative (TN), false positive (FP)
and false negative (FN) can be determined for each class. Then several commonly used
metrics can be generated to evaluate the performance of the classification model, which
are defined as

K _C..
i=1“ii
_ 0
Ac = st = X 100%
i=14j=1"ij (8)
_ TP _ TP 2xpxr
P=rpirp T Trpern 17T

p+r
where A, represents the overall accuracy. p and r represent the precision and recall,

respectively. Since the precision competes against the recall in any model, F1 score,
acting as a comprehensive index, tends to better gauge the classification performance.
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Figure 2. Confusion matrix of HSI pixels for eight classes. (Class 1: Asphalt; Class 2: Crack; Class 3:
Oil; Class 4: Artificial marking; Class 5: Green vegetation; Class 6: Water; Class 7: Dry vegetation;
Class 8: Concrete)



In this study, the trained classification model resulted in an overall accuracy of
92.1%, that is, 92.1% HSI pixels in testing set are correctly classified. The averaged
precision, recall, and F1 scores for all 8 classes are 92.2%, 92.1%, and 91.9%,
respectively. It reveals that, in general, the trained model achieves satisfactory
classification performance on all eight different classes. In addition, the general
equilibrium of average precision and recall also indicates that the trained model is
balanced to both positive and negative samples for each class. In summary, the results
show that the proposed method can predict cracks and other materials under complex
scenes.

CONCLUSIONS

This study focuses on the application of HSI for crack detection and identification
of surface materials under complex scenes. The proposed method uses a low-rank
representation-based approach to build a multi-class classifier for the prediction of
cracks and other surface materials. The method has some unique characteristics,
including the use of dictionary learning process, which reduces redundancy and
increases discriminative ability for HSI classification. The introduction of a locality
constraint term encourages similar HSI pixels to have similar representations, leading
to high classification accuracy. The trained classification model was tested on a real-
world HSI crack dataset captured from the UAV. The results showed that the trained
model achieved satisfactory classification performance and high efficiency, with an
overall accuracy of 92.1%.
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