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ABSTRACT

Recently, structural damage recognition has gained significant progress using deep
learning and computer vision techniques. However, massive training images, the
interclass balance and completeness of damage categories are essential to ensure
recognition accuracy. In addition, the generalization ability for new damage categories
and robustness under real-world scenarios are limited. This study proposes a task-aware
meta-learning paradigm using limited images for universal structural damage
segmentation. First, a novel task generation strategy instead of random sampling is
designed based on feature density clustering. A synthetical metric of Jaccard distance
and Euclidean distance is established to measure the feature similarity among multitype
damage images. The class separability discovered in the high-level feature space of
multi-type structural damage enhances the interpretability of randomly-generated tasks
for conventional meta-learning. Second, a dual-stage optimization framework is built
based on Model-Agnostic Meta-Learning (MAML), comprising an internal
optimization stage of the semantic segmentation model (U-Net) and an external
optimization stage of the meta-learning machine. Third, a set of core samples around
the cluster center is selected to form an additional query pool and evaluate the
tasksignificance scores of different tasks within a meta-batch by the same criteria. The
task-significance scores are utilized in the external optimization to control the
orientation of gradient updates towards more significant tasks. To verify the
effectiveness and necessity of the proposed method, ablation experiments are performed
using a multi-type structural damage dataset, including concrete crack, steel fatigue
crack, and concrete spalling. The proposed method outperforms directly training the
original U-Net and the conventional MAML algorithm using only a handful of training
samples with improvements in segmentation accuracy. In addition, the improvement in
recognition accuracy increases when using fewer training images, further indicating the
efficacy of the proposed method. The generalization ability for new structural damage
of steel corrosion is also demonstrated.
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INTRODUCTION

During the service period for decades, civil infrastructure is inevitably affected by
various complex factors (including environmental erosion, material aging, fatigue load,
and disaster events such as typhoons, earthquakes, and other emergencies), leading to
the irreversible appearance and accumulation of structural damage. There will be many
different damage types, such as concrete cracks, steel fatigue cracks, concrete spalling,
cable corrosion, etc. Timely identification of the location, morphology and geometrical
characteristic of surface damage to ensure the resistance and service performance of
structures is a crucial problem to be urgently solved in engineering practice.

In recent years, with the development of artificial intelligence and the collectible
large-scale datasets, deep learning has shown prominent potential in multiple visual
disciplines, especially for vision-based structural damage detection [1-5]. In deep
learning-based methods, convolutional neural networks (CNN) are utilized to extract
the multi-level features of input images to map the damage annotations [6-9]. Bao and
Li proposed a machine learning-based paradigm of structural health diagnosis using
mathematical algorithms to process various monitoring data and predict the structural
performance and state in high-dimensional feature space [10]. Model-Agnostic Meta-
Learning (MAML) was proposed based on the initial parameter optimization, regarded
as the most representative meta-learning algorithm. Recently, meta-learning has also
been applied to structural health monitoring and damage detection, and an attribute-
based few-shot meta-learning paradigm has been established for structural damage
classification [11,12].

Currently, most supervised learning approaches require sufficient image quantity
and feature abundance to ensure recognition accuracy and robustness in various
scenarios, leading to parameter redundancy inevitably in specific tasks. In general, the
CNN-based methods are mainly performed on a particular dataset, lack the
generalization to new onsite images, and the accuracy is limited to the number of
training samples, the equilibrium, and the completeness of different categories. In the
case of limited supervision, forming an assessment model for universal structural
damage identification is challenging. To address the above challenge, inspired by the
MAML algorithm, this study proposes a meta-learning-based algorithm for multi-type
structural damage segmentation on small-scale datasets. Unlike the other few-shot
learning approaches, it only utilizes a few samples to train a basic meta-learning model
applicable to multiple datasets.

METHODOLOGY
Method Overview

The existing few-shot segmentation methods usually rely on a large-scale dataset to
train the basic model migrating to the unseen tasks to obtain acceptable accuracy. In
contrast to prior work, aiming at the condition of limited supervision under actual
scenarios, a task generation strategy is proposed based on the partition of feature
distribution space, and a task-significance-aware dual-stage optimization paradigm is
established inspired by the MAML algorithm to extract underlying features of multi-
type structural damage.



The overall schematic of the proposed method is shown in Figure 1. In the semantic
segmentation problem, the artificially defined categories only based on the surface
information of the images cannot precisely interpret the deep semantic features of
images. For the issue of interpretability in random task generation, the proposed method
designs a density clustering-based task generator for obtaining the task sampling
boundaries and core samples in feature space. In addition, the task-significance-aware
algorithm is applied over the dual-stage optimization paradigm to train the meta-
learning machine adapted to massive episode test tasks. Meanwhile, the significance
coefficient is introduced to constrain the external optimized direction, which is
evaluated by the data of the query pool contained in cluster core samples.

Task Generation Algorithm

The task generation algorithm is proposed to address the problem of
interpretability of randomly-generated tasks and ambiguity of semantic categories of
identification for multi-type structural damage. As shown in Figure 1, the task generator
includes three components: feature extractor, feature clustering, and task sampling.

The feature extractor is a deep convolutional network for obtaining the underlying
features of all images in D, . In order to acquire more reliable feature vectors, the
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encoder module of the current initial model fa” is utilized as the feature extractor and

updated along with the training process. According to the difference of semantic
information that the model pays attention to in different training stages, the extractor
can be adaptively optimized to get the variational feature representation after each
parameter iteration. After all the training data pass through the feature extractor, a global
average pooling operation is employed to integrate the global spatial information of the
feature map, which is converted into high-dimensional feature vectors.
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Figure 1. Flowchart of task-significance-aware meta-learning method



Based on class separability in the high-level feature space of multi-type structural
damage, the clustering method is adopted to partition feature points and generate tasks.
And in the feature space, the smaller the sample distance, the more learnable features
are between them. Therefore, the obtained clusters can be taken as the task sampling
boundaries, and an individual task is sampled from a specific class cluster. To cluster
samples, the first is to select an appropriate metric to measure the similarity between
data points. Since a meta-batch contains multiple tasks, the feature distribution must
exist in relatively complete partitions. The metric space should maximize the inter-class
distance and minimize the intra-class distance. In such a situation, the conventional
Euclidean or cosine distance is difficult to perform well in high-dimensional space; thus,
feature diversity vanishing is caused by dimension superposition. Inspired by the re-
ranking of image retrieval, the proposed model adopts the comprehensive similarity
based on Euclidean distance and k-nearest Jaccard distance as the clustering index. The

optimized k-nearest Jaccard similarity Jij can be written as
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where s_and X, represent the variance and average of the c-dimension of the entire

output feature vectors, respectively. For data ', transform the k-nearest set into 0-1
Vector k' = (k?, k2,...,k",....kM), if X" e R', k" =1, otherwise, k" =0.

As a more reliable and mathematical measure of sample feature similarity, the
comprehensive similarity integrates the relationship and feature distribution of samples,
avoiding the vanishing of feature diversity. Based on above feature metric, to further
generate the sampling boundaries of each task, a clustering method called density-based
spatial clustering algorithm (DBSCAN) is adopted to achieve partitioning data points in
high-dimensional feature space. It regards a class cluster as a high-density region
separated by low-density regions, and a class cluster consists of a set of core samples
and border samples. The core points locate in the high-density areas as the cluster center
with sufficient border points in the surrounding. Data points that do not belong to any
cluster in the low-density regions are called outliers.

Task-Significance-Aware Dual-stage Optimization Paradigm

Overall, the proposed algorithm adopted internal-external dual-stage optimization
mechanism to train the meta-learning machine. On small-scale training dataset, the
difference of image features among various episodic tasks leads to the problems of
instability and insufficient robustness during the training process. Considering
effectiveness of different tasks on the new test task, the proposed meta-learning method
introduces task-significance-aware module to constrain the orientation of external
optimization, which evaluates the significance scores of different tasks within a meta-
batch by means of a standard query pool consisting of the core samples in clusters.

For the internal optimization, a group of updated parameters can be calculated in the
internal optimizer with the internal loss using the support images in each task. The
learning rate o can be fixed as a hyperparameter. The model is optimized for the
performance of parameters to the support images, so that the internal meta-objective is:
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where 0; represents the parameters being updated on the kth task of the nth meta-batch

with the initial value @"*.

For the external optimization, the query images of each task are regard as the input
of the updated network to calculate the loss. In view of the contribution and effect of
each task in current meta-batch, the weighted sum of the query loss is computed as the
external optimization loss lossex. In the external optimizer, 10SSex is used to accomplish
meta-optimization across tasks with the updating of initial parameters via gradient
descent algorithm. For the updating of initial parameters of the network based on the
meta-batch, the task-significance-aware optimization function can be defined as:
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where £ denotes the external learning rate, @« represents the parameters updated on
the kth task of the nth meta-batch, w, is the task-significance coefficient following the

fundamental principleof o <w, <1, Z:=1Wk =1.The larger value of w, , the greater

control effect of the task to the meta-learning machine optimization. The task-
significance coefficient can be calculated as:

w, = F{>, Losslyy, f, OOI/ 20 F. . Losslyr, £, (x)I} @)

where Q" :{(xi”,yi”)}iNj" represents the meta-batch query pool, and F denotes the task-
significance-aware function as a subtraction function adjusting the amplification effect
of task query errors. Diverse forms of task-significance-aware function can be chosen
to fulfill the task-aware requirement under different datasets. The details of task-
significance-aware dual-stage optimization paradigm is outlined in Algorithm 1.

Algorithm 1. Task-Significance-Aware Meta-learning method

train | ,train

. trai .
Input: multi-type structural damage dataset D™ :{(Xi i )} learning rate «, 3 ;
the number of Meta-batch N
Output: trained initial parameters 6"

randomly initialize ¢’
: repeatn=n+1fromn=0

=

N train % N train

2

trai Lo .
3: extract feature vector of X; e , Calculate the similarity matrix J € IR
4

Sample meta-batch tasks """ and query pool Qn by means of DBSCAN

5.  forall Tk c r do

6: optimize parameters @« based on S : @ < 67 — oV, loss,,
7 compute Loss, and LOSSQn utilizing o

8: compute w, and Loss,, = Zszlwk Loss,,

9: update 8": 0™ « 0" -V loss,,

10: untiln=N




RESULTS AND DISCUSSION

The collected images are roughly divided into slight structural damage (concrete
crack and steel fatigue crack) and regional structural damage (concrete spall and steel
corrosion) and captured from multiple actual scenes with a resolution of 512 <512,
Figure 2 shows representative annotated images for multi-type structural damage.

For slight structural damage, the Dice Loss is utilized for optimization to eliminate
the imbalance of foreground and background. For regional damage with fair proportion,
the Cross-Entropy Loss is selected, and the calculations are expressed respectively as
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where H and W represent the height and width of the input images, respectively. The pi
denotes the probability that the ith pixel is predicted to be a positive sample, and i
denotes the ground-truth label for the ith pixel.

In order to reinforce the constraint of the meta-batch query pool in the external

optimizer, pixel-Dice Loss is used to calculate the query pool error as
HxW
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The mloU (mean intersection-over-union) and mPA (mean pixel accuracy), as
widely used metrics, are chosen to measure the segmentation performance as
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where C denotes the total number of pixel categories, and Pjj denotes the number of
pixels in the ith class classified to the jth class.

For single-type damage identification, a total of 80 images with a resolution of
512>612 in the query set are predicted to generate binary damage maps. Some
representative semantic segmentation results of different types of structural damage in
the query set are shown in Figure 3. The results illustrate that the task-significance-
aware meta-learning method achieves the optimal recognition performance for various
damage types with multi-morphology, diverse severities, and multiple background
complexities. Compared with the original U-Net and MAML, the proposed method can
identify more explicit damage margins, and the anti-interference for complex
background noise and damage-like structural boundaries has improved significantly.

Figure 2. Representative images with pixel annotation



To validate the generalization ability to new types of damage of proposed method,
the primary dataset collects concrete crack, steel fatigue crack, and concrete spalling
images to train the meta-learning machine for the steel corrosion category, including 80
query images without annotations and 40 labeled support images. Figure 4 shows partial
comparative segmentation results of steel corrosion images, and Figure 5 shows the
boxplots of evaluation metrics. By contrast, the average mloU and average mPA of the
proposed method increased by 5.1% and 0.6% with better robustness and generalization.
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Figure 3. Segmentation results of different damage types in the query set
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Figure 4. Some representative segmentation results of steel corrosion
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Figure 5. Comparative boxplots of evaluation metrics for steel corrosion

CONCLUSIONS

This study introduces a task-significance-aware meta-leaning method for multi-type
structural damage detection under limited supervision. The proposed meta-learning



model learns cross-task knowledge and improves segmentation accuracy in two ways.
A task generation strategy is designed based on feature density clustering to solve the
poor interpretability of randomly generated tasks. A novel similarity metric of Jaccard
distance and Euclidean distance is introduced to address the vanishing of separability in
feature space. The task-significance-aware dual-stage optimization paradigm is
established to learn the shared potential information among different categories. As the
standard samples around the cluster center, the meta-batch query pool is formed to
evaluate the significant score of different tasks guiding the orientation of external
optimization. Experimental results illustrate the effectiveness of the proposed method.
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