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ABSTRACT 
 

Recently, structural damage recognition has gained significant progress using deep 
learning and computer vision techniques. However, massive training images, the 
interclass balance and completeness of damage categories are essential to ensure 
recognition accuracy. In addition, the generalization ability for new damage categories 
and robustness under real-world scenarios are limited. This study proposes a task-aware 
meta-learning paradigm using limited images for universal structural damage 
segmentation. First, a novel task generation strategy instead of random sampling is 
designed based on feature density clustering. A synthetical metric of Jaccard distance 
and Euclidean distance is established to measure the feature similarity among multitype 
damage images. The class separability discovered in the high-level feature space of 
multi-type structural damage enhances the interpretability of randomly-generated tasks 
for conventional meta-learning. Second, a dual-stage optimization framework is built 
based on Model-Agnostic Meta-Learning (MAML), comprising an internal 
optimization stage of the semantic segmentation model (U-Net) and an external 
optimization stage of the meta-learning machine. Third, a set of core samples around 
the cluster center is selected to form an additional query pool and evaluate the 
tasksignificance scores of different tasks within a meta-batch by the same criteria. The 
task-significance scores are utilized in the external optimization to control the 
orientation of gradient updates towards more significant tasks. To verify the 
effectiveness and necessity of the proposed method, ablation experiments are performed 
using a multi-type structural damage dataset, including concrete crack, steel fatigue 
crack, and concrete spalling. The proposed method outperforms directly training the 
original U-Net and the conventional MAML algorithm using only a handful of training 
samples with improvements in segmentation accuracy. In addition, the improvement in 
recognition accuracy increases when using fewer training images, further indicating the 
efficacy of the proposed method. The generalization ability for new structural damage 
of steel corrosion is also demonstrated. 
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INTRODUCTION 
 

During the service period for decades, civil infrastructure is inevitably affected by 

various complex factors (including environmental erosion, material aging, fatigue load, 

and disaster events such as typhoons, earthquakes, and other emergencies), leading to 

the irreversible appearance and accumulation of structural damage. There will be many 

different damage types, such as concrete cracks, steel fatigue cracks, concrete spalling, 

cable corrosion, etc. Timely identification of the location, morphology and geometrical 

characteristic of surface damage to ensure the resistance and service performance of 

structures is a crucial problem to be urgently solved in engineering practice. 

In recent years, with the development of artificial intelligence and the collectible 

large-scale datasets, deep learning has shown prominent potential in multiple visual 

disciplines, especially for vision-based structural damage detection [1-5]. In deep 

learning-based methods, convolutional neural networks (CNN) are utilized to extract 

the multi-level features of input images to map the damage annotations [6-9]. Bao and 

Li proposed a machine learning-based paradigm of structural health diagnosis using 

mathematical algorithms to process various monitoring data and predict the structural 

performance and state in high-dimensional feature space [10]. Model-Agnostic Meta-

Learning (MAML) was proposed based on the initial parameter optimization, regarded 

as the most representative meta-learning algorithm. Recently, meta-learning has also 

been applied to structural health monitoring and damage detection, and an attribute-

based few-shot meta-learning paradigm has been established for structural damage 

classification [11,12]. 

Currently, most supervised learning approaches require sufficient image quantity 

and feature abundance to ensure recognition accuracy and robustness in various 

scenarios, leading to parameter redundancy inevitably in specific tasks. In general, the 

CNN-based methods are mainly performed on a particular dataset, lack the 

generalization to new onsite images, and the accuracy is limited to the number of 

training samples, the equilibrium, and the completeness of different categories. In the 

case of limited supervision, forming an assessment model for universal structural 

damage identification is challenging. To address the above challenge, inspired by the 

MAML algorithm, this study proposes a meta-learning-based algorithm for multi-type 

structural damage segmentation on small-scale datasets. Unlike the other few-shot 

learning approaches, it only utilizes a few samples to train a basic meta-learning model 

applicable to multiple datasets. 

 

METHODOLOGY 

 

Method Overview 

 

The existing few-shot segmentation methods usually rely on a large-scale dataset to 

train the basic model migrating to the unseen tasks to obtain acceptable accuracy. In 

contrast to prior work, aiming at the condition of limited supervision under actual 

scenarios, a task generation strategy is proposed based on the partition of feature 

distribution space, and a task-significance-aware dual-stage optimization paradigm is 

established inspired by the MAML algorithm to extract underlying features of multi-

type structural damage. 



The overall schematic of the proposed method is shown in Figure 1. In the semantic 

segmentation problem, the artificially defined categories only based on the surface 

information of the images cannot precisely interpret the deep semantic features of 

images. For the issue of interpretability in random task generation, the proposed method 

designs a density clustering-based task generator for obtaining the task sampling 

boundaries and core samples in feature space. In addition, the task-significance-aware 

algorithm is applied over the dual-stage optimization paradigm to train the meta-

learning machine adapted to massive episode test tasks. Meanwhile, the significance 

coefficient is introduced to constrain the external optimized direction, which is 

evaluated by the data of the query pool contained in cluster core samples. 
 

Task Generation Algorithm 

 

The task generation algorithm is proposed to address the problem of 

interpretability of randomly-generated tasks and ambiguity of semantic categories of 

identification for multi-type structural damage. As shown in Figure 1, the task generator 

includes three components: feature extractor, feature clustering, and task sampling. 

The feature extractor is a deep convolutional network for obtaining the underlying 

features of all images in 
trainD . In order to acquire more reliable feature vectors, the 

encoder module of the current initial model f n
θ

 is utilized as the feature extractor and 

updated along with the training process. According to the difference of semantic 

information that the model pays attention to in different training stages, the extractor 

can be adaptively optimized to get the variational feature representation after each 

parameter iteration. After all the training data pass through the feature extractor, a global 

average pooling operation is employed to integrate the global spatial information of the 

feature map, which is converted into high-dimensional feature vectors. 
 

 

 
Figure 1. Flowchart of task-significance-aware meta-learning method 

 



Based on class separability in the high-level feature space of multi-type structural 

damage, the clustering method is adopted to partition feature points and generate tasks. 

And in the feature space, the smaller the sample distance, the more learnable features 

are between them. Therefore, the obtained clusters can be taken as the task sampling 

boundaries, and an individual task is sampled from a specific class cluster. To cluster 

samples, the first is to select an appropriate metric to measure the similarity between 

data points. Since a meta-batch contains multiple tasks, the feature distribution must 

exist in relatively complete partitions. The metric space should maximize the inter-class 

distance and minimize the intra-class distance. In such a situation, the conventional 

Euclidean or cosine distance is difficult to perform well in high-dimensional space; thus, 

feature diversity vanishing is caused by dimension superposition. Inspired by the re-

ranking of image retrieval, the proposed model adopts the comprehensive similarity 

based on Euclidean distance and k-nearest Jaccard distance as the clustering index. The 

optimized k-nearest Jaccard similarity ijJ  can be written as 

where 
cS and cx  represent the variance and average of the c-dimension of the entire 

output feature vectors, respectively. For data ix , transform the k-nearest set into 0-1 

vector 1 2( , ,..., ,..., )i n N

i i i ik k k k k= , if n ix R , 1n

ik = , otherwise, 0n

ik = . 

As a more reliable and mathematical measure of sample feature similarity, the 

comprehensive similarity integrates the relationship and feature distribution of samples, 

avoiding the vanishing of feature diversity. Based on above feature metric, to further 

generate the sampling boundaries of each task, a clustering method called density-based 

spatial clustering algorithm (DBSCAN) is adopted to achieve partitioning data points in 

high-dimensional feature space. It regards a class cluster as a high-density region 

separated by low-density regions, and a class cluster consists of a set of core samples 

and border samples. The core points locate in the high-density areas as the cluster center 

with sufficient border points in the surrounding. Data points that do not belong to any 

cluster in the low-density regions are called outliers. 
 

Task-Significance-Aware Dual-stage Optimization Paradigm 

 

Overall, the proposed algorithm adopted internal-external dual-stage optimization 

mechanism to train the meta-learning machine. On small-scale training dataset, the 

difference of image features among various episodic tasks leads to the problems of 

instability and insufficient robustness during the training process. Considering 

effectiveness of different tasks on the new test task, the proposed meta-learning method 

introduces task-significance-aware module to constrain the orientation of external 

optimization, which evaluates the significance scores of different tasks within a meta-

batch by means of a standard query pool consisting of the core samples in clusters. 

For the internal optimization, a group of updated parameters can be calculated in the 

internal optimizer with the internal loss using the support images in each task. The 

learning rate α can be fixed as a hyperparameter. The model is optimized for the 

performance of parameters to the support images, so that the internal meta-objective is: 
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where 
n

kθ represents the parameters being updated on the kth task of the nth meta-batch 

with the initial value 1n-
θ . 

For the external optimization, the query images of each task are regard as the input 

of the updated network to calculate the loss. In view of the contribution and effect of 

each task in current meta-batch, the weighted sum of the query loss is computed as the 

external optimization loss lossex. In the external optimizer, lossex is used to accomplish 

meta-optimization across tasks with the updating of initial parameters via gradient 

descent algorithm. For the updating of initial parameters of the network based on the 

meta-batch, the task-significance-aware optimization function can be defined as: 

where   denotes the external learning rate, 
n

kθ  represents the parameters updated on 

the kth task of the nth meta-batch, 
kw  is the task-significance coefficient following the 

fundamental principle of 0 1kw  ,
1

1
K

kk
w

=
= . The larger value of 

kw , the greater 

control effect of the task to the meta-learning machine optimization. The task-

significance coefficient can be calculated as:  

where 1{( , )}
nQ

N
n n n

i i iQ x y ==  represents the meta-batch query pool, and F denotes the task-

significance-aware function as a subtraction function adjusting the amplification effect 

of task query errors. Diverse forms of task-significance-aware function can be chosen 

to fulfill the task-aware requirement under different datasets. The details of task-

significance-aware dual-stage optimization paradigm is outlined in Algorithm 1. 

 

Algorithm 1. Task-Significance-Aware Meta-learning method 

Input:  multi-type structural damage dataset {( , )}train train train

i iD x y= ; learning rate ,  ;  

the number of Meta-batch N 

Output: trained initial parameters N
θ  

1:   randomly initialize 0
θ  

2:   repeat n = n + 1 from n = 0 

3:   extract feature vector of 
train

ix , Calculate the similarity matrix 
N N


train train

J  

4:       Sample meta-batch tasks 
+1n

Γ and query pool 
nQ  by means of DBSCAN 

5:       for all kT  +1n
Γ  do 
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n
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RESULTS AND DISCUSSION 

 

The collected images are roughly divided into slight structural damage (concrete 

crack and steel fatigue crack) and regional structural damage (concrete spall and steel 

corrosion) and captured from multiple actual scenes with a resolution of 512 × 512. 

Figure 2 shows representative annotated images for multi-type structural damage. 

For slight structural damage, the Dice Loss is utilized for optimization to eliminate 

the imbalance of foreground and background. For regional damage with fair proportion, 

the Cross-Entropy Loss is selected, and the calculations are expressed respectively as 
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where H and W represent the height and width of the input images, respectively. The pi 

denotes the probability that the ith pixel is predicted to be a positive sample, and yi 

denotes the ground-truth label for the ith pixel. 

In order to reinforce the constraint of the meta-batch query pool in the external 

optimizer, pixel-Dice Loss is used to calculate the query pool error as 

The mIoU (mean intersection-over-union) and mPA (mean pixel accuracy), as 

widely used metrics, are chosen to measure the segmentation performance as 
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where C denotes the total number of pixel categories, and Pij denotes the number of 

pixels in the ith class classified to the jth class. 

For single-type damage identification, a total of 80 images with a resolution of 

512×512 in the query set are predicted to generate binary damage maps. Some 

representative semantic segmentation results of different types of structural damage in 

the query set are shown in Figure 3. The results illustrate that the task-significance-

aware meta-learning method achieves the optimal recognition performance for various 

damage types with multi-morphology, diverse severities, and multiple background 

complexities. Compared with the original U-Net and MAML, the proposed method can 

identify more explicit damage margins, and the anti-interference for complex 

background noise and damage-like structural boundaries has improved significantly. 

 
 

 
Figure 2. Representative images with pixel annotation 
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To validate the generalization ability to new types of damage of proposed method, 

the primary dataset collects concrete crack, steel fatigue crack, and concrete spalling 

images to train the meta-learning machine for the steel corrosion category, including 80 

query images without annotations and 40 labeled support images. Figure 4 shows partial 

comparative segmentation results of steel corrosion images, and Figure 5 shows the 

boxplots of evaluation metrics. By contrast, the average mIoU and average mPA of the 

proposed method increased by 5.1% and 0.6% with better robustness and generalization. 

 

 
Input images Annotations U-Net MAML Proposed method 

     

     
Figure 3. Segmentation results of different damage types in the query set 
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Figure 4. Some representative segmentation results of steel corrosion 
 

 

  

Figure 5. Comparative boxplots of evaluation metrics for steel corrosion 

 

 

CONCLUSIONS 

 

This study introduces a task-significance-aware meta-leaning method for multi-type 

structural damage detection under limited supervision. The proposed meta-learning 



model learns cross-task knowledge and improves segmentation accuracy in two ways. 

A task generation strategy is designed based on feature density clustering to solve the 

poor interpretability of randomly generated tasks. A novel similarity metric of Jaccard 

distance and Euclidean distance is introduced to address the vanishing of separability in 

feature space. The task-significance-aware dual-stage optimization paradigm is 

established to learn the shared potential information among different categories. As the 

standard samples around the cluster center, the meta-batch query pool is formed to 

evaluate the significant score of different tasks guiding the orientation of external 

optimization. Experimental results illustrate the effectiveness of the proposed method. 
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