
ABSTRACT 

Applying data-driven approaches in damage detection of CFRP composites is 
becoming increasingly popular with the rapid development of deep learning methods. 
However, obtaining enough data for training these data-driven models is challenging, 
and the presence of imbalanced data can further exacerbate the problem. Moreover, due 
to the limited availability of CFRP data under various structural conditions, it is 
desirable to make the most use of the existing data or leverage the previously learned 
models. To handle these problems, we propose a transfer learning-based approach, 
which combines the benefits of transfer learning to overcome the challenges caused by 
limited data, and benefits of meta training to effectively train new models. Our 
experiments demonstrate the efficacy of this approach in identifying damage in CFRP. 

INTRODUCTION 

To automatically detect the localization of damage area, researchers have applied 
data-driven approaches [1,2,3,4] to identify the failure mode of inter-laminar 
delamination for Carbon Fiber Reinforced Plastics (CFRP). For instance, in a prior 
study [2], the path length across the damaged area was utilized as target. Then, damage 
area estimation was conducted using geometric relationships. The CWT-DCNN 
approach was developed [1] to facilitate damage localization in real-time. The proposed 
approach transforms Lamb wave signals into Continuous Wavelet Transform (CWT) 
representations. These representations are then inputted into a CNN for feature 
extraction and detection of potential damage along the corresponding path. 

However, obtaining enough labeled data for model training can be a significant 
challenge. In machinery fault diagnosis, scholars employed deep generative adversarial 
networks (GAN) to produce new data and facilitate model training [5]. But training a 

 
Yan Chen, Department of Systems Engineering, City University of Hong Kong, Tat Chee 
Avenue, Kowloon, Hong Kong, China. 
Cheng Liu, Department of Systems Engineering, City University of Hong Kong, Tat Chee 
Avenue, Kowloon, Hong Kong, China. 

Meta-Transfer-Learning based Damage 
Detection of CFRP Composite Structures 

YAN CHEN and CHENG LIU



GAN is notoriously hard and also requires sizeable data. To overcome this, in our study, 

few-shot transfer learning has been proposed [6], which enables models to learn new 

concepts from a few labeled data. It has been applied to various fields such as computer 

vision [7], natural language processing [8], and recommendation systems [9]. 

The integration of meta transfer learning into CWT-DCNN will be explored to 

localize the damage area and overcome those challenges mentioned above. We will 

focus primarily on the learning strategy and demonstrate its performances. The 

remainder of this paper starts with the Method of Approach. The details of combining 

few-shot meta transfer learning into CWT-DCNN is presented in Technical Details, and 

experimentally validated and investigated in the section of Experiment. We close the 

paper in the section of Conclusion. 

 

 

METHOD OF APPROACH 

 

This paper aims to train a model on an original dataset and then refine it using 

limited samples from a new dataset. This process leverages meta-learning, which can 

improve the efficiency of transfer learning by learning the hyperparameters. 

 

Continuous Wavelet Transform (CWT) 

 

Lamb wave damage detection is widely used for detecting structural failure by 

analyzing signals through feature extraction. However, the original wave signals are not 

suitable for deep learning. Therefore, we can turn to CWT, which is a multiresolution 

method that describes energy changes in images [10]. 

 

Residual Neural Network 

 

To ensure the performance of basic model, we used a residual network [11]. 

 

Few-Shot Transfer Learning and Meta Learning 

 

Few-shot transfer learning helps to adapt models to new tasks with limited data [12]. 

Meta-learning refers to the process of learning something that is typically not learned 

directly, like hyperparameters [13]. For instance, in training a neural network, we 

specify the number of layers, but does not know whether the selected hyperparameters 

are optimal. Thus, learning the hyperparameters is an instance of meta-learning. 

Our approach leverages the benefits of transfer learning and meta-learning to enable 

neural networks to converge faster. "Transfer" means the ability to utilize the network's 

previously trained weights in new tasks through 2 operations: scaling and shifting (SS), 

i.e., 𝛼𝑋 + 𝛽. "Meta" implies that SS can be observed as hyperparameters. This idea is 

the same as the MTL proposed by [14]. However, in contrast, our approach emphasizes 

binary classification rather than the identification of multiple classes. 

 

Data Source 

 

 

 



TABLE I. COUPON SPECIMENS 

 

Layup type Ply orientation Coupon specimens 

Layup 1 [02/904] L1S11 L1S12 L1S18 and L1S19 

Layup 2 [0/902/45/-45/90] L2S11 L2S17 L2S18 and L2S20 

Layup 3 [902/45/-45]2 L3S11 L3S13 L3S18 and L3S20 

 

 
 

Figure 1. (a) Specimen with a PZT sensor array, (b) Investigation into the progression of fatigue damage 

resulting in fatigue failure, and (c) Increase in delamination as the number of cycles augmented [16]. 

 

 

The initial experiments were carried out by the SACL in partnership with the PCoE. 

To evaluate the material's endurance against fatigue-induced deterioration [15,16], 

accelerated aging tests were executed. And to examine the impact of the splint's 

orientation on the experimental outcomes, three ply structures were selected as Table I. 

The setup for the experiment comprised of 36 transmission paths, with each 

specimen equipped with one actuation and one receiving PZT sensor array, as 

demonstrated in Figure 1. (a). The fatigue test applied cyclic load, resulting in the 

progressive development of damage, as illustrated in Figure 1. (b). Ground-truth data 

for the damage were acquired by conducting X-ray imaging on the specimen, as 

depicted in Figure 1. (c), and utilized to validate the analysis of measurement data. 

The CWT-DCNN approach preprocesses the historical sensor signal data and 

converted them into CWT images in a unified format. Those labeled CWT graphs will 

be used directly in our approach. 
 

 

TECHNICAL DETAILS 

 

 

 
 

Figure 2. Structure of proposed neural network. 



Our network consists of a feature extractor coupled with a meta-learner and a 

classifier, where ΦS1(Scaling) and ΦS2(Shifting) are used as hyperparameters for the 

meta-learner.  

The network starts with a 3 × 3 kernel CONV layer, followed by 4 residual blocks 

and 4 CONV layers with 3 × 3 kernels in each block as shown in Figure 2. Following 

the completion of 4 blocks, the output feature maps undergo compression by using 

average pooling layer. The designs of ΦS1 and ΦS2 are based on the structure of Θ, which 

is the CONV core. Finally, the classifier θ is a fully connected FC layer that has the 

same structure as the pre-trained FC layer. To begin transfer learning, it is necessary to 

first train a basic model, also known as pre-training. We will initialize Θ and θ with 

random values and optimizing them through gradient descent. 
 

[Θ; 𝜃] =: [Θ; 𝜃] − 𝛼∇ℒ𝒟([Θ; 𝜃])                                  (1) 

 

ℒ𝒟([Θ; 𝜃]) =
1

|𝒟|
∑  (𝑥,𝑦)∈𝒟 𝑙(𝑓[Θ;𝜃](𝑥), 𝑦)                           (2) 

 

which is cross-entropy loss, and α is learning rate. During pre-training, Θ will be learned 

and frozen in the following transfer learning as Figure 3. The classifier θ will be retained 

and not frozen. Meta-training and testing are sequential processes. Meta-training uses 

few-shot samples randomly selected from the target datasets, and meta-testing performs 

on the remaining samples. 

Our approach is based on modifying the Scaling and Shifting (SS) meta operations 

introduced in previous research [14] rather than using the parameter-level Fine-Tuning 

(FT) employed by methods such as MAML [17]. Unlike FT, which updates all neuron 

parameters of CONV layers, SS reduces the parameters need to learn and avoid 

overfitting. Additionally, SS maintains the frozen large-scale trained parameters to 

prevent catastrophic forgetting [18,19]. Specifically, the SS operations ΦS1 and ΦS2 will 

not change the frozen neuron of Θ in learning, whereas FT updates the entire Θ. To 

elaborate on SS operations, we optimize classifier θ' with the loss of few-shot samples 

using gradient descent. 

 

𝜃′ ← 𝜃 − 𝛽∇𝜃ℒ𝒯(𝑡𝑟)([Θ; 𝜃], Φ𝑆1,2)                              (3) 

 

 

 
 

Figure 3. Difference between Fine-Tuning and Scaling & Shifting. 

 

 



unlike Eq. (1), where Θ is not updated. We introduce θ′ as a temporal classifier 

specifically designed for the current test after each learning. Its initialization is based on 

the optimized θ obtained during pre-training, which distinguishes it from the MTL 

method [14], where θ learned in the pre-training phase is forgotten. In our method, ΦS1 

is initialized with values of 1, while ΦS1 is initialized with values of 0. Subsequently, 

they are optimized using the loss function. 

 

Φ′𝑆𝑖 =:Φ𝑆𝑖
− 𝛾∇Φ𝑆𝑖

ℒ𝒯(𝑡𝑒)([Θ; 𝜃′], Φ𝑆1,2)                         (4) 

 

The application of ΦS{1,2} to the frozen neurons is shown in Figure 3. The pre-trained 

parameter set, for a given layer, comprises K neurons. For a neuron, we have a pair of 

parameters consisting of weight and bias, represented as (Wi, bi), i=1,2. We apply the 

meta-learning process to learn K pairs of scalars, denoted as ΦS{1,2}, which are used to 

modify the parameters (W, b) given the input X. 

 

𝑆𝑆(𝑋;𝑊, 𝑏;Φ𝑆1,2) = (𝑊 ⊙Φ𝑆1)𝑋 + (𝑏 + Φ𝑆2)                    (5) 

 

where we use the symbol ⊙ to represent element-wise multiplication. Figure 2 is an 

illustration performed on a 3 × 3 filter. Following SS operations, this filter undergoes 

scaling by ΦS1. Additionally, the feature maps resulting from convolutions are shifted 

by ΦS2 in addition to the original bias b. 

Moreover, the proposed approach offers more creative features compared to the 

MTL method: 1.the ratio of positive samples in each few-shot can be modified, and 

2.the number of gradient descent iterations can be adjusted based on the sample's label 

in the few-shot. The experimental results suggest that these measures are effective. 

 

 

EXPERIMENT 

 

Overall Test Procedure 

 

In experiments, we used the 3 datasets from loading experiments mentioned above. 

Because the Lamb wave data have already been transformed into CWT images, the 

"data" afterwards only refers to images. 

Take Layup1 as an example, after the model being trained on Layp1, it was first be 

tested on data from other two Layups. Then, we selected few-shot samples from L2 and 

L3, and used the proposed method to meta-train the pre-trained model. Finally, we 

evaluated the meta-trained network's performance by using it to predict the label of the 

remaining data in L2 and L3, and recorded the results in confusion matrixes.  

 

Data Selection and Parameter Setting 

 

We selected specimen 11 from Layup1, specimen 18 from Layup2 and specimen 

13 from Layup3 as our datasets. For base model learning, the dataset was divided into 

training, validation, and testing sets in a 7:1:2 ratio. The validation set was used to 

evaluate the model's accuracy and loss after each training epoch. We selected the model 

with the lowest loss as the final base model, and we used the testing set to evaluate its 



performance. The few-shot size was fixed to 18. The proportion of positive samples in 

the few-shot is adjustable, with experiments conducted using ratios of 1/3, 1/2, and 2/3. 

The experimental performances are presented by specimen as below. 

 

Performances 

 

MODEL TRAINED ON LAYUP1 

 

Layup1specimen11 contains 957 records with 225 positive class data. The pre-

testing results on L1S11 are as shown in Figure 1. (a). 

For transfer to L2S18, the gradient descent cycle was 5 for both positive and 

negative samples. The ratio of positive few-shot samples is 1/3. Figure 1. (b) showed 

the performance tested before transfer on the same dataset as Figure 1. (c). The best 

performance obtained after repeating the transfer experiment 10 times is shown in 

Figure 1. (c). 

The model showed decent performance on L2S18 even without transfer, indicating 

some similarity between L1S11 and L2S18. After transfer, the overall accuracy of the 

model increased by 8%, with positive class recognition accuracy increasing by 5% and 

negative by 10%. This result is satisfactory. 

It is important to note that transfer learning heavily depends on the selection of few-

shot data. Due to the unique characteristics of the dataset, particularly the lower data 

quality in L2 compared to other Layups, it is not always possible to obtain good and 

representative data by randomly selecting few-shot samples. Consequently, the model's 

performance on the new Layup may suffer from poor few-shot samples.  

Next, we evaluate the transfer performance of L1S11 to L3S13 using the following 

configuration: 3 cycles of gradient descent for positive samples and 1 cycle for negative 

samples, with 1/2 positive samples in few-shot. After ten runs, the best result is obtained 

as Figure 1. (e). Figure 1. (d) showed the performance tested before transfer. Although 

the overall accuracy is acceptable, there are more incorrect identifications of positive 

samples than correct ones. 

In comparison, the meta-trained model shows an overall accuracy improvement of 

2%, with a 3% increase in accuracy for positive recognition and a 1% increase for 

negative. This improvement is not as significant as the transfer on L2S18, but it is still 

noteworthy. Further experiments or changes in parameters may yield better results.   
 

 

 

 

 
 

Figure 4. Performances of model pre-trained on L1. 

 

 



MODEL TRAINED ON LAYUP2 

 

The model trained on L2S18 and transferred to L1 or L3 produced unsatisfactory 

results that are not presented in this part, because L2 was incompletely recorded. 

 

MODEL TRAINED ON LAYUP3 

 

L3S13 contains 759 records with 120 positive class data. The pre-testing results on 

L3S13 are shown as Figure 4. (a). 

For transfer to L1S11, the gradient descent cycle was set to 7 for positive samples 

and 4 for negative samples, respectively. The positive ratio of few-shot is 1/3. In Figure 

4. (b), we can see that the performance before transfer is general, especially the base 

model is poor for the recognition of positive samples in L1S11. Then in Figure 4. (c), 

the accuracy of the model increased by about 7% after transfer, with a 23% increase in 

positive accuracy and a 3% increase in negative. 

For transfer to L2S18, the gradient descent cycle was set to 5 for both positive and 

negative samples. The ratio of positive samples in few-shot is 1/3. After transfer, the 

obtained results reveal an overall accuracy improvement of approximately 7% as shown 

in Figure 4. (e). The recognition accuracy of positive samples increased by about 27% 

compared with the results before transfer as Figure 4. (d), while the accuracy of negative 

ones increased by 2%. These findings are considered satisfactory, particularly with the 

significant improvement in recognizing positive samples. 

 

 

 
 

Figure 4. Performances of model pre-trained on L3. 

 

 

CONCLUSION 

 

In our experiments, we observed that using the better recorded L1 and L3 specimens 

as the base model training data yielded more satisfactory results, while training the base 

model with L2 did not perform well. This highlights the importance of having a suitable 

dataset for transfer learning, whether it is a general transfer learning scenario or our 

proposed few-shot meta transfer learning. The dataset must have enough samples, a 

relative balanced ratio of positive and negative samples, and be representative enough. 

In our context, L2 was incompletely recorded compared to L1S11 and L3S13, resulting 

in poor experimental results. 

Our study successfully combined few-shot learning with meta transfer learning for 

damage detection of CFRP. While good randomly selected data is important for transfer 

learning, we demonstrated through experiments that our proposed method is effective. 



In the future, we could explore more suitable datasets for transfer experiments and apply 

this method to damage monitoring of other materials and structures. 
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