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ABSTRACT

Applying data-driven approaches in damage detection of CFRP composites is
becoming increasingly popular with the rapid development of deep learning methods.
However, obtaining enough data for training these data-driven models is challenging,
and the presence of imbalanced data can further exacerbate the problem. Moreover, due
to the limited availability of CFRP data under various structural conditions, it is
desirable to make the most use of the existing data or leverage the previously learned
models. To handle these problems, we propose a transfer learning-based approach,
which combines the benefits of transfer learning to overcome the challenges caused by
limited data, and benefits of meta training to effectively train new models. Our
experiments demonstrate the efficacy of this approach in identifying damage in CFRP.

INTRODUCTION

To automatically detect the localization of damage area, researchers have applied
data-driven approaches [1,2,3,4] to identify the failure mode of inter-laminar
delamination for Carbon Fiber Reinforced Plastics (CFRP). For instance, in a prior
study [2], the path length across the damaged area was utilized as target. Then, damage
area estimation was conducted using geometric relationships. The CWT-DCNN
approach was developed [1] to facilitate damage localization in real-time. The proposed
approach transforms Lamb wave signals into Continuous Wavelet Transform (CWT)
representations. These representations are then inputted into a CNN for feature
extraction and detection of potential damage along the corresponding path.

However, obtaining enough labeled data for model training can be a significant
challenge. In machinery fault diagnosis, scholars employed deep generative adversarial
networks (GAN) to produce new data and facilitate model training [5]. But training a
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GAN is notoriously hard and also requires sizeable data. To overcome this, in our study,
few-shot transfer learning has been proposed [6], which enables models to learn new
concepts from a few labeled data. It has been applied to various fields such as computer
vision [7], natural language processing [8], and recommendation systems [9].

The integration of meta transfer learning into CWT-DCNN will be explored to
localize the damage area and overcome those challenges mentioned above. We will
focus primarily on the learning strategy and demonstrate its performances. The
remainder of this paper starts with the Method of Approach. The details of combining
few-shot meta transfer learning into CWT-DCNN is presented in Technical Details, and
experimentally validated and investigated in the section of Experiment. We close the
paper in the section of Conclusion.

METHOD OF APPROACH

This paper aims to train a model on an original dataset and then refine it using
limited samples from a new dataset. This process leverages meta-learning, which can
improve the efficiency of transfer learning by learning the hyperparameters.

Continuous Wavelet Transform (CWT)

Lamb wave damage detection is widely used for detecting structural failure by
analyzing signals through feature extraction. However, the original wave signals are not
suitable for deep learning. Therefore, we can turn to CWT, which is a multiresolution
method that describes energy changes in images [10].

Residual Neural Network
To ensure the performance of basic model, we used a residual network [11].
Few-Shot Transfer Learning and Meta Learning

Few-shot transfer learning helps to adapt models to new tasks with limited data [12].
Meta-learning refers to the process of learning something that is typically not learned
directly, like hyperparameters [13]. For instance, in training a neural network, we
specify the number of layers, but does not know whether the selected hyperparameters
are optimal. Thus, learning the hyperparameters is an instance of meta-learning.

Our approach leverages the benefits of transfer learning and meta-learning to enable
neural networks to converge faster. "Transfer" means the ability to utilize the network's
previously trained weights in new tasks through 2 operations: scaling and shifting (SS),
i.e., aX + B. "Meta" implies that SS can be observed as hyperparameters. This idea is
the same as the MTL proposed by [14]. However, in contrast, our approach emphasizes
binary classification rather than the identification of multiple classes.

Data Source



TABLE I. COUPON SPECIMENS

Layup type Ply orientation Coupon specimens
Layup 1 [02/904] L1S11 L1S12 L1S18 and L1S19
Layup 2 [0/902/45/-45/90] L2S11 L2S17 L2518 and L2S20
Layup 3 [902/45/-45]2 L3S11 L3S13 L3518 and L3S20
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Figure 1. (a) Specimen with a PZT sensor array, (b) Investigation into the progression of fatigue damage
resulting in fatigue failure, and (c) Increase in delamination as the number of cycles augmented [16].

The initial experiments were carried out by the SACL in partnership with the PCoE.
To evaluate the material's endurance against fatigue-induced deterioration [15,16],
accelerated aging tests were executed. And to examine the impact of the splint's
orientation on the experimental outcomes, three ply structures were selected as Table |.

The setup for the experiment comprised of 36 transmission paths, with each
specimen equipped with one actuation and one receiving PZT sensor array, as
demonstrated in Figure 1. (a). The fatigue test applied cyclic load, resulting in the
progressive development of damage, as illustrated in Figure 1. (b). Ground-truth data
for the damage were acquired by conducting X-ray imaging on the specimen, as
depicted in Figure 1. (c), and utilized to validate the analysis of measurement data.

The CWT-DCNN approach preprocesses the historical sensor signal data and
converted them into CWT images in a unified format. Those labeled CWT graphs will
be used directly in our approach.

TECHNICAL DETAILS
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Figure 2. Structure of proposed neural network.



Our network consists of a feature extractor coupled with a meta-learner and a
classifier, where ®s1(Scaling) and ®s(Shifting) are used as hyperparameters for the
meta-learner.

The network starts with a 3 x 3 kernel CONV layer, followed by 4 residual blocks
and 4 CONV layers with 3 x 3 kernels in each block as shown in Figure 2. Following
the completion of 4 blocks, the output feature maps undergo compression by using
average pooling layer. The designs of ®s; and ®s; are based on the structure of ®, which
is the CONV core. Finally, the classifier ¢ is a fully connected FC layer that has the
same structure as the pre-trained FC layer. To begin transfer learning, it is necessary to
first train a basic model, also known as pre-training. We will initialize ® and 6 with
random values and optimizing them through gradient descent.
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which is cross-entropy loss, and o is learning rate. During pre-training, ® will be learned
and frozen in the following transfer learning as Figure 3. The classifier & will be retained
and not frozen. Meta-training and testing are sequential processes. Meta-training uses
few-shot samples randomly selected from the target datasets, and meta-testing performs
on the remaining samples.

Our approach is based on modifying the Scaling and Shifting (SS) meta operations
introduced in previous research [14] rather than using the parameter-level Fine-Tuning
(FT) employed by methods such as MAML [17]. Unlike FT, which updates all neuron
parameters of CONV layers, SS reduces the parameters need to learn and avoid
overfitting. Additionally, SS maintains the frozen large-scale trained parameters to
prevent catastrophic forgetting [18,19]. Specifically, the SS operations ®s; and ®s, will
not change the frozen neuron of ® in learning, whereas FT updates the entire ®. To
elaborate on SS operations, we optimize classifier 6" with the loss of few-shot samples
using gradient descent.
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Figure 3. Difference between Fine-Tuning and Scaling & Shifting.



unlike Eq. (1), where ® is not updated. We introduce ¢ as a temporal classifier
specifically designed for the current test after each learning. Its initialization is based on
the optimized & obtained during pre-training, which distinguishes it from the MTL
method [14], where @ learned in the pre-training phase is forgotten. In our method, ®s:
is initialized with values of 1, while ®s; is initialized with values of 0. Subsequently,
they are optimized using the loss function.

q’lsi = q’si - Vchsl.Lg-(te)([@; 0], q)st) 4)

The application of ®sg1,23 to the frozen neurons is shown in Figure 3. The pre-trained
parameter set, for a given layer, comprises K neurons. For a neuron, we have a pair of
parameters consisting of weight and bias, represented as (Wi, bi), i=1,2. We apply the
meta-learning process to learn K pairs of scalars, denoted as ®sg123, which are used to
modify the parameters (W, b) given the input X.

SS(X; W, b; s, ,) = (W © @5,)X + (b + Ds,) (5)

where we use the symbol © to represent element-wise multiplication. Figure 2 is an
illustration performed on a 3 x 3 filter. Following SS operations, this filter undergoes
scaling by ®s;. Additionally, the feature maps resulting from convolutions are shifted
by ®s; in addition to the original bias b.

Moreover, the proposed approach offers more creative features compared to the
MTL method: 1.the ratio of positive samples in each few-shot can be modified, and
2.the number of gradient descent iterations can be adjusted based on the sample's label
in the few-shot. The experimental results suggest that these measures are effective.

EXPERIMENT
Overall Test Procedure

In experiments, we used the 3 datasets from loading experiments mentioned above.
Because the Lamb wave data have already been transformed into CWT images, the
"data" afterwards only refers to images.

Take Layupl as an example, after the model being trained on Laypl, it was first be
tested on data from other two Layups. Then, we selected few-shot samples from L2 and
L3, and used the proposed method to meta-train the pre-trained model. Finally, we
evaluated the meta-trained network's performance by using it to predict the label of the
remaining data in L2 and L3, and recorded the results in confusion matrixes.

Data Selection and Parameter Setting

We selected specimen 11 from Layupl, specimen 18 from Layup2 and specimen
13 from Layup3 as our datasets. For base model learning, the dataset was divided into
training, validation, and testing sets in a 7:1:2 ratio. The validation set was used to
evaluate the model's accuracy and loss after each training epoch. We selected the model
with the lowest loss as the final base model, and we used the testing set to evaluate its



performance. The few-shot size was fixed to 18. The proportion of positive samples in
the few-shot is adjustable, with experiments conducted using ratios of 1/3, 1/2, and 2/3.
The experimental performances are presented by specimen as below.

Performances
MODEL TRAINED ON LAYUP1

Layuplspecimenll contains 957 records with 225 positive class data. The pre-
testing results on L1S11 are as shown in Figure 1. (a).

For transfer to L2S18, the gradient descent cycle was 5 for both positive and
negative samples. The ratio of positive few-shot samples is 1/3. Figure 1. (b) showed
the performance tested before transfer on the same dataset as Figure 1. (c). The best
performance obtained after repeating the transfer experiment 10 times is shown in
Figure 1. (c).

The model showed decent performance on L2S18 even without transfer, indicating
some similarity between L1S11 and L2S18. After transfer, the overall accuracy of the
model increased by 8%, with positive class recognition accuracy increasing by 5% and
negative by 10%. This result is satisfactory.

It is important to note that transfer learning heavily depends on the selection of few-
shot data. Due to the unique characteristics of the dataset, particularly the lower data
quality in L2 compared to other Layups, it is not always possible to obtain good and
representative data by randomly selecting few-shot samples. Consequently, the model's
performance on the new Layup may suffer from poor few-shot samples.

Next, we evaluate the transfer performance of L1S11 to L3S13 using the following
configuration: 3 cycles of gradient descent for positive samples and 1 cycle for negative
samples, with 1/2 positive samples in few-shot. After ten runs, the best result is obtained
as Figure 1. (e). Figure 1. (d) showed the performance tested before transfer. Although
the overall accuracy is acceptable, there are more incorrect identifications of positive
samples than correct ones.

In comparison, the meta-trained model shows an overall accuracy improvement of
2%, with a 3% increase in accuracy for positive recognition and a 1% increase for
negative. This improvement is not as significant as the transfer on L2S18, but it is still
noteworthy. Further experiments or changes in parameters may yield better results.

Acc=0.886 Acc=0.702 Acc=0.784

Acc=0.761 Acc=0.779

CLWRRN 35.29% 85.09%
22 12 194

i d [10.50
N, 3:06% (TR 32.34% 23.32% WL | 17.94% 16.51% [EERELA
3 95 294 212 697 113 104 526 0.25

P N P N P N P N P N
Prediction Prediction Prediction Prediction Prediction
(a) (b) (c) (d) (e)

o

Ground Truth

Figure 4. Performances of model pre-trained on L1.



MODEL TRAINED ON LAYUP2

The model trained on L2S18 and transferred to L1 or L3 produced unsatisfactory
results that are not presented in this part, because L2 was incompletely recorded.

MODEL TRAINED ON LAYUP3

L3S13 contains 759 records with 120 positive class data. The pre-testing results on
L3S13 are shown as Figure 4. (a).

For transfer to L1S11, the gradient descent cycle was set to 7 for positive samples
and 4 for negative samples, respectively. The positive ratio of few-shot is 1/3. In Figure
4. (b), we can see that the performance before transfer is general, especially the base
model is poor for the recognition of positive samples in L1S11. Then in Figure 4. (c),
the accuracy of the model increased by about 7% after transfer, with a 23% increase in
positive accuracy and a 3% increase in negative.

For transfer to L2S18, the gradient descent cycle was set to 5 for both positive and
negative samples. The ratio of positive samples in few-shot is 1/3. After transfer, the
obtained results reveal an overall accuracy improvement of approximately 7% as shown
in Figure 4. (e). The recognition accuracy of positive samples increased by about 27%
compared with the results before transfer as Figure 4. (d), while the accuracy of negative
ones increased by 2%. These findings are considered satisfactory, particularly with the
significant improvement in recognizing positive samples.
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Figure 4. Performances of model pre-trained on L3.

CONCLUSION

In our experiments, we observed that using the better recorded L1 and L3 specimens
as the base model training data yielded more satisfactory results, while training the base
model with L2 did not perform well. This highlights the importance of having a suitable
dataset for transfer learning, whether it is a general transfer learning scenario or our
proposed few-shot meta transfer learning. The dataset must have enough samples, a
relative balanced ratio of positive and negative samples, and be representative enough.
In our context, L2 was incompletely recorded compared to L1S11 and L3S13, resulting
in poor experimental results.

Our study successfully combined few-shot learning with meta transfer learning for
damage detection of CFRP. While good randomly selected data is important for transfer
learning, we demonstrated through experiments that our proposed method is effective.



In the future, we could explore more suitable datasets for transfer experiments and apply
this method to damage monitoring of other materials and structures.
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