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ABSTRACT

A health indicator (HI) serves as an intermediary link between structural health mon-
itoring (SHM) data and prognostic models, and an efficient HI should meet prognostic
criteria, i.e., monotonicity, trendability, and prognosability. However, designing a proper
HI for composite structures is a challenging task due to the complex damage accumula-
tion process during operational conditions. Additionally, designing a HI that is indepen-
dent of historical SHM data (i.e., from the healthy state until the current state) is even
more challenging as HI and remaining useful life prediction are time-dependent phenom-
ena. A reliable SHM technique is required to extract informative time-independent data,
and a powerful model is necessary to construct a proper HI from that data. The lamb
wave (LW) technique is a useful SHM method that can extract such time-independent
data. However, translating the LW data at each time step to the appropriate HI value
is a challenge. Al—deep learning in this case—offers significant mathematical poten-
tial to meet this difficulty. A semi-supervised learning approach is developed to train
the model using the simulated ideal HIs as the targets. The model uses the current LW
data, without prior or subsequent data, to output the current HI value. Prognostic cri-
teria are then calculated using the entire HI trajectory until the end-of-life. To validate
the proposed approach, aging experiments from NASA’s prognostics data repository are
used, which include composite specimens subjected to a tension-tension fatigue load-
ing and monitored using the LW technique. The LW data is first processed using the
Hilbert transform, and then, upper and lower signal envelopes in two states — baseline
and current time — are used to feed the deep learning model. The results confirm the
effectiveness of the proposed approach according to the prognostic criteria. The effect
of different triggering frequencies of the LW system on the results is also discussed in
terms of the prognostic criteria.
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INTRODUCTION

Composite structures are becoming more popular in a variety of industries owing
to their beneficial mechanical characteristics, such as lightweight and high strength. Be-
cause of the continual stress redistribution triggered by the non-homogeneous and multi-
interface structure of composite laminates, in addition to the possibility of manufactur-
ing imperfections, the damage mechanisms of composite laminates during cyclic fatigue
loading are complex [1]]. Therefore, predicting the structure’s behavior, particularly its
remaining useful life (RUL), is critical for important structures such as airplanes, ships,
wind turbines, etc., as it not only improves safety and efficiency but also saves time and
money on maintenance.

A health indicator (HI) is a valuable index that is required to first indicate the struc-
ture’s health status (diagnostics) and then to predict its RUL (prognostics) [2-5]]. Devel-
oping (or discovering) a HI that meets the requirements for both diagnostics and prog-
nostics is a challenge, and it appears to be more challenging in complicated cases such as
composite laminates. If no maintenance and self-healing take place, a structure’s HI (or
damage index) is always decreasing (or increasing) throughout operational conditions
due to damage growth. This fact should be incorporated into the design of a HI and
examined using a metric known as monotonicity (Mo). The comprehensive HIs of an
ensemble of associated components that have reached their end-of-life (EoL) should ide-
ally arrive at the same value, signifying the failure threshold. However, Hls at the EoL.
change and do not always end up with an identical value; this discrepancy can be quan-
tified using a metric called prognosability (Pr). HIs are more predictable if they have
comparable trends and a similar correlation in terms of usage time for similar structures.
By using the trendability (Tr) criterion [6], it is possible to quantify the resemblance in
HIs. A HI must satisfy the three evaluation criteria of Mo, Pr, and Tr from the viewpoint
of prognostics, which is the primary focus of the current work.

Without online condition monitoring, also known as structural health monitoring
(SHM) for structures, complex time-dependent patterns (such as progressive damage
scenarios in composite structures) and unexpected occurrences (such as a bird strike on
an aircraft) would not be considered. Therefore, SHM is crucial for the diagnosis of
structures [7]. Regarding the prognosis of structures, prognostics and health manage-
ment (PHM) technology is an extension of SHM that is more thorough and includes
RUL prediction.

The fact that prognostic and HI construction models are time-dependent is one of
their common drawbacks, which means that in order to enhance the performance of the
HI and RUL prediction models, the relationship between historical data from the starting
point (often in a healthy state) until the present moment should be taken into considera-
tion. As a result, prognostic and HI construction models function less efficiently when
prior SHM data, either entirely or partially from the beginning, is missing. In this regard,
a robust SHM method is needed for extracting informative time-independent evidence,
and a strong model is required to create an appropriate HI from those data. Such time-
independent pieces of evidence may be extracted using guided wave (GW) approaches,
such as Lamb waves (LW). GW is among the most widely utilized SHM methods, termed
GWSHM, for thin-walled structures in the aviation industry [1]]. Investigations into the
practical issues of applying GWSHM to aerospace applications with wide fluctuations



in operating and environmental circumstances have also been conducted. Several trust-
worthy compensating approaches have been put forth and tested. The capacity of GW
to characterize materials has received attention recently. It should be noted that from an
engineering perspective, what counts is whether the structure can continue to bear the
load for which it was intended [1]. The traditional GWSHM techniques, on the other
hand, emphasize local approaches in which local variations in material characteristics
driven by the damage incidence can be tracked (position, severity). With this in mind, a
HI may be seen as adopting engineers’ perspectives and attempting to determine how all
of the separate and spatially dispersed fatigue damage contributes to overall structural
deterioration, which will be useful from a structural design standpoint.

In addition to the previously discussed aspects, it is important to note that translating
LW data to the appropriate HI value at each limited time step when LW inspections are
conducted is a challenging task. This is due to the fact that the data to be exploited is
available only at an individual LW inspection time step, without access to prior or subse-
quent data. However, in order to meet prognostic criteria, the HI must consider the entire
historical trajectory. Moreover, composite-made components lack a true comprehensive
HI. To address these challenges, data-driven approaches, such as artificial intelligence
(AI), can be utilized due to their ability to discover complex and nonlinear relationships.
To tackle the lack of true health indicators, a semi-supervised learning (SSL) approach
has been employed to train the model using simulated ideal HIs as labels [6].

NASA’s prognostics data repository is utilized to analyze aging investigations that
involved composite dogbone specimens that were subjected to tension-tension (T-T) fa-
tigue loading monitored by the LW technique. Signal processing methods are used to
initially process the LW data for feeding the semi-supervised deep learning network.
The outcomes support the practicality of the suggested strategy in light of the prognostic
criteria. In terms of the prognostic criteria, the impact of various LW system trigger-
ing frequencies on the outcomes is also examined. The rest of the paper includes The
remainder of the paper is divided into six sections, including HIs’ evaluation criteria, sig-
nal processing, semi-supervised criteria-based fusion model, experimental fatigue data
set, results and discussions, and conclusion.

HEALTH INDICATOR EVALUATION CRITERIA

Three verified criteria (Mo, Pr, and Tr) are used to assess the prognostic signature
(HI)’s quality [2-5]] and are formulated as follows:
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where ;) and x(;,) represent the measurements at the times of ¢, and ¢;, respectively.
cov 1s the covariance, where x; is the vector of measurements on the 4" specimen
(among M specimens) that has N; measurements. o, and o, are the standard devia-
tions of x; and x;, respectively. The selected metric for Mo in Eq. (1), the so-called mod-
ified Mann-Kendall (MMK), compared to the other versions (Sign and Mann-Kendall),
is more robust to noise and also considers the relation of data points with a time gap of
more than one unit [[6]. All three criteria get a score in the range of [0 — 1], with 1 rep-
resenting the optimum score for the HIs. After considering all of the above-mentioned
criteria, the Fitness metric is defined as follows:

Fitness = a- Mowgry +b-Trwn + ¢ Priun 4)

which ranges from 0 (minimum quality) to 3 (best quality) for the assessed HIs, assuming
that the constants a, b, and ¢ are 1.

SIGNAL PROCESSING

Before utilizing the deep learning (DL) model, certain steps can be taken to enhance
performance and reduce the complexity of the subsequent DL. model. One popular tech-
nique is to process the signals by extracting the envelopes of LW signals using the mag-
nitude of their analytic signal. This is accomplished by applying the filtering process
known as the Hilbert transform (HT). However, in discrete-time signal processing, the
HT is substituted with a finite impulse response (FIR) filter, which helps decrease com-
putational complexity. This specific FIR filter is referred to as the Hilbert transform FIR
(HT-FIR) filter. The length of the filter is determined based on the frequency of the ex-
citation in the current study. For example, a frequency of 400 kHz corresponds to an
HT-FIR filter length of 400. To create the filter, an ideal brick-wall filter is windowed
using a Kaiser window with a shape parameter 8 = 8. Figure [l displays Lamb wave
signals captured at baseline and at the 50000"" cycle, with an excitation frequency of
150 kHz, for the path between actuator 5 and sensor 12. Similarly, all signals undergo
processing to generate upper and lower envelopes.

SEMI-SUPERVISED CRITERIA-BASED FUSION MODEL

This section explains the overall learning framework first, followed by the DL archi-
tecture and training adjustments.

Learning framework

Due to the absence of an actual HIs value, an imaginary function is employed to gen-
erate the ideal HIs labels, and an SSL paradigm is applied by implicitly integrating the
prognostic indices (Mo, Pr, and Tr) and leveraging the existing EoL [6]. This approach
falls under the category of intrinsically semi-supervised inductive learning algorithms,
which are advancements over existing supervised algorithms that allow for the direct use
of labeled and unlabeled data for optimizing an objective function with elements. The
optimal generator function, which is expressed in terms of the usage time (¢), has the
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Figure 1. Sensed Lamb wave signals at baseline and 50000 cycle with an excitation
frequency of 150 kHz for path 30 (actuator 5 and sensor 12).

form of a quadratic polynomial (H ;) = t*/t%,,;). The labels in the current work are
scaled by a factor of 100 as well, giving them a range of [0, 100], where 0 denotes the
initial state and 100 denotes the failure threshold (EoL).

Deep learning architecture and training

The convolutional neural network (CNN), as depicted in Figure [2] has been specif-
ically designed to optimize the fitting of LW inputs to the ideal simulated HI. This net-
work is referred to as the semi-supervised CNN (SSCNN) from now on, as it follows a
fusion model based on the SSL paradigm. To prepare inputs, a 3D form of 36x2000x4 is
considered, which includes 36 paths between 6 actuators and 6 sensors, 2000 sampling
points, and 4 signals of upper and lower envelopes (see Section SIGNAL PROCESS-
ING) in two states — baseline and current time. The leakage coefficient for all leaky
rectified linear unit (Leaky ReLU) functions is 0.01. As the regression loss function
between predictions and targets, a mean squared error (MSE) is used.

DATA SET OF FATIGUE EXPERIMENTS

In this study, four carbon fiber reinforced polymer (CFRP) samples (L1S11, L1S12,
L1S18, and L1S19) were considered for evaluation of the proposed approach. These
samples had a layup configuration of [05/90,4)s and underwent accelerated aging ex-
periments, specifically T-T fatigue, conducted at Stanford Structures and Composites
Laboratory (SACL) in collaboration with the Prognostics Center of Excellence at NASA
Ames Research Center [8-10]. Each specimen was monitored with a total of 36 trans-
mission paths of LWs, consisting of one-shot and one-receiving PZT sensor array.

The excitation frequencies ranged from 150 to 450 kHz with 50 kHz intervals, using
an average input voltage of 50 V and a gain of 20 dB. Measurements were recorded under
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Figure 2. The architecture of the proposed CNN model.

three different boundary conditions: traction free, clamped, and loaded. However, for
purposes of this study, only measurements under the clamped boundary condition were
considered due to their closer resemblance to real-world scenarios. In some cases, mul-
tiple measurements were recorded at the clamped boundary condition, with a preference
given to the first one in this study.

RESULTS AND DISCUSSIONS

An Adam optimizer was utilized to train the SSCNN with 28800 learnable parame-
ters, employing an initial learning rate of 0.001. The SSCNN model was trained using
the first two specimens (L1S11 and L1S12), while the third specimen (L1S18) was uti-
lized for validation and the fourth specimen (LL1S19) for testing purposes. The maximum
number of training epochs was set to 200, with a batch size of 10 and shuffling of samples
performed every epoch. However, the network’s output is determined based on the best
validation loss, and the validation check was performed every 10 iterations (the number
of trained batches). The constructed HIs by the SSCNN model are shown in Figure [3]
The results are also smoothed using a moving average filter with a window length of
3, i.e., two elements before the current position are taken into account. The evaluation
metrics for the constructed Hls are presented in Table

As seen in Table [l the Fitness scores for the raw constructed HIs range from 1.53
to 1.98, while the minimum and maximum Fitness scores for the smoothed constructed
HIs are 2.03 (at the frequency of 250 kHz) and 2.53 (at the frequency of 200 kHz), re-
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Figure 3. The constructed HIs by the SSCNN model. The first two specimens were used
for the training phase, while specimens 3 and 4 were considered for the validation and
testing phases, respectively. The main and smoothed outputs are shown with circles and

solid lines, respectively.

TABLE 1. THE EVALUATION METRICS FOR HEALTH INDICATOR CONSTR-
CUTED BY THE SSCNN MODEL (RAW / SMOOTHED).

HIs’ metrics 150 kHz 200 kHz 250 kHz 300 kHz 350 kHz 400 kHz 450 kHz

Mo 0.57/094 0.67/098 096/093 0.64/091 0.54/086 0.56/0.88 0.60/0.93
Pr 0.72/0.78 0.71/0.89 0.51/0.62 0.77/0.80 0.80/0.80 0.72/0.86 0.64/0.69
Tr 0.37/0.64 0.54/0.65 0.05/048 0.58/0.75 048/0.70 0.48/0.67 0.51/0.60
Fitness 1.66/236 1.92/253 153/2.03 198/246 182/236 1.76/241 1.75/2.21

spectively. These results demonstrate the acceptable performance of the SSCNN model.
It is important to emphasize that the training phase involved completely separate CFRP
coupons, which closely resembles real-world applications. The excitation frequency of
250 kHz yielded the least favorable HIs, whereas the 200 kHz and 300 kHz frequencies

produced the highest-quality HIs.

CONCLUDING REMARKS



Designing a reliable health indicator (HI) for composite structures under fatigue is
very difficult without access to historical data. In this regard, the LW system was used to
monitor the health of composite laminates in the current work. SSCNN, a deep learning
model, was suggested and validated using accelerated aging experiments from NASA’s
prognostics data repository to generate a HI that meets prognostic criteria utilizing only
the most recent LW data. The results showed that the proposed approach is effective,
and the effect of different excitation frequencies on the prognostic criteria was explored.
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