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ABSTRACT 

In recent years, actuation and propagation using a relatively novel electromechani- 
cal effect, namely flexoelectricity, have become an emerging field of research. In this 
article, we explore the use of flexoelectric dielectrics for Lamb wave actuation and prop- 
agation for structural health monitoring (SHM) applications. Towards this objective, an 
analytical solution is presented for Lamb wave generation and propagation in plate-like 
structures using flexoelectric-piezoelectric transducers bonded to the host plate surface 
through an adhesive layer. The model considers both interfacial shear and peel stresses 
at the interface of the transducer and the plate. These interfacial stresses under applied 
electric actuation are determined based on a one-dimensional (1D) model, which as- 
sumes Kirchhoff plate-like behaviour for both the actuator and the host plate. A 2D 
elasticity solution is obtained for Lamb wave propagation in the host plate under the 
interfacial shear and peel stresses obtained from the above 1D model considering plane 
strain conditions. This solution is obtained in the wave number domain by applying 
Fourier transform spatially. Finally, the response is obtained in the physical domain by 
applying the inverse Fourier transform and residue theorem. The strain response at the 
plate surface is compared with the rigid bonding model to illustrate the effect of bonding 
compliance. The numerical study demonstrates the effect of the adhesive layer on the 
response for different excitation frequencies. 

 

 
INTRODUCTION 

Lamb wave-based structural health monitoring (SHM) has been widely adopted for 
damage detection in thin-walled structures in the last two decades [1]. Among various 
smart materials, piezoelectric materials have been extensively used as sensors, actuators, 
and energy harvesters due to their advantages, such as low cost, large bandwidth, high 
sensitivity, and resistance to electromagnetic fields and radiation. However, this effect 
is only shown by non-centrosymmetric materials. Also, most piezoelectric materials 
possess health concerns. 

A relatively novel electromechanical coupling effect called flexoelectricity occur- 
ring in all dielectric materials is emerging as an alternative to overcome the limitations 
of piezoelectric materials. This is a higher-order linear electromechanical effect which 
relates the dipole polarisation to the mechanical strain gradient (direct effect) and me- 
chanical strain to the electric field gradient (converse effect) [2]. Due to the fact that the 
effect is caused by strain and polarisation gradients, it depends on size. This makes it 
better than the piezoelectric effect for nano- and micro-scales [3]. 
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The discovery of large flexoelectric effects has led to a very high surge in the study
of flexoelectric structures and devices in the last decade [4]. The use of the converse
flexoelectric effect to actuate a host structure has been much less studied. Tzou and
coworkers [5] presented a theoretical framework for actuating elastic beams using flexo-
electric patch actuators considering rigid bonding model (pin-force-moment). The same
group also studied the actuation of rectangular plates using flexoelectric strip actuators.
Wang et al. [6] presented a consistent pin-force-moment model for the actuation of host
beam using rigidly bonded flexoelectric actuator. Wei et al. [7] extended this model to
obtain an analytical solution for Lamb wave generation in plates using flexoelectric actu-
ators. Ray [8] analysed a nanobeam integrated with a rigidly bonded flexoelectric actua-
tor layer using the first order shear deformation theory. In a recent article, the authors [9]
have developed a one-dimensional analytical model for actuation using piezoelectric-
flexoelectric transducer by considering both interfacial shear and peel stresses.

All the analytical models available so far for Lamb wave actuation and propaga-
tion using flexoelectric transducers, considered rigid bonding between the actuator and
the host structure. It is well known from earlier studies on piezoelectric actuators that
the interfacial stress profiles at the actuator-host structure interface are far from being
concentrated at the actuator edges [10], and in turn, have significant effects on the actu-
ation and propagation [11]. Piezoelectric transducers are widely used for actuating and
sensing Lamb waves in thin-walled structures for online SHM. While in these transduc-
ers, the stress transfer between the transducer and the host plate occurs predominantly
through the interfacial shear stress, in flexoelectric transducers, the normal interfacial
stress (peel stress) dominates. In this article, we obtained a 2D elasticity solution for
Lamb wave propagation in the host plate under interfacial stresses obtained from the
above 1D model considering plane strain conditions. The solution is obtained in the
wave number domain by applying Fourier transform spatially. Further, the response is
obtained in the physical domain by using inverse Fourier transform and residue theorem.
This formulation is validated by comparing the forward response with the pin-force-
moment model. Finally, the effect of the adhesive layer on forward response has been
illustrated for different excitation frequencies.

FLEXOELECTRIC ACTUATOR MODEL

In our previous work [9], we have presented the analytical solution for the interfacial
shear and peel stresses at the interface between a flexoelectric-piezoelectric actuator and
the host plate. It is briefly recalled in this section. The 3D constitutive relations for a
flexoelectric-piezoelectric solid domain are obtained from the bulk electric Gibbs energy
density function as

σp = Cε− eTE + µV
Dp = eε+ ηE + µW

(1)

whereσp andDp are physical stress tensor and physical electric displacement vector,
respectively. ε andE denote the strain and electric field vector, respectively. C, e, and η
are the familiar elastic stiffness coefficients, piezoelectric stress constants, and dielectric
permittivity under constant strain, respectively. µ represent both converse and direct



TABLE I. ESSENTIAL AND NATURAL BOUNDARY CONDITIONS.

Essential Natural
ui = ūi (σij − τijk,k)nj + (4lnl)njnkτijk −4j(τijknk) = t̄i
φ = φ̄ (Di −Qij,j)ni + (4lnl)njniQij −4j(Qijnj) = D̄n

ui,lnl = v̄i τijknknj = r̄i
φ,knk = χ̄ Qijnjni = Q̄

flexoelectric coefficients. V and W are defined as electric field gradient and strain
gradient respectively.

The governing equations of motion and the boundary conditions for linear dielectric
solids are derived using the extended Hamilton’s principle as

σpij,j + bi = ρüi,
Dp
i,i = 0.

(2)

where σpij = σij−τijl,l is physical stress tensor andDp
i = Di−Qil,l is physical electric

displacement vector. σij denotes the Cauchy stress tensor, Dk electric displacement
vector, τijl higher-order stress tensor, and Qkl higher-order electric displacement [12].

The essential and natural boundary conditions are listed in Table I.
where ui and φi are displacement vector and electric potential, respectively. bi, t̄i,

D̄n, r̄i, Q̄ are the body force components, surface tractions, electric charge density,
higher order tractions, and higher order charge, respectively. ∆j = ∂j − njnl∂l is the
tangential gradient operator.

By using these constitutive relations and governing equations, we developed an ana-
lytical model for the interfacial shear and peel stresses between the surface-bonded flex-
oelectric transducer and host structure (Fig. 1) by satisfying all the boundary conditions.
The close-form solutions of the interfacial stresses can be expressed as [9]

τ(x) = C1 sinh(px) + C3 sinh(αx) cos(γx) + C5 cosh(αx) sin(γx). (3)

σz = C1δ1 cosh(px) + C3 [δ2 cosh(αx) cos(γx) + δ3 sinh(αx) sin(γx)]
+C5 [δ2 sinh(αx) sin(γx)− δ3 cosh(αx) cos(γx)] ,

(4)

where C1, C3, and C5 are the arbitrary constants to be determined from the boundary
conditions. δ1, δ2, and δ3 can be defined as

δ1 =
p(Γ11 − p2)

Γ12

, δ2 =
α(Γ11 + 3γ2 − α2)

Γ12

, δ3 = −γ(Γ11 − 3α2 + γ2)

Γ12

. (5)

ELASTICITY SOLUTION FOR LAMB WAVE PROPAGATION

We consider a model in which a flexoelectric transducer of length ’a’ is bonded to a
thin isotropic plate through an adhesive layer (Fig. 1). The thickness of the transducer,
host plate, and adhesive layer is ht, h, and, ha, respectively. The plate has Youngs
modulus Ys and Poissons ratio νs, and Ga is the shear rigidity of the adhesive layer.
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Figure 1. Transducer-adhesive-plate system.

The Lamb wave equations and boundary conditions for an isotropic plate in the wave
number domain can be represented under plane strain condition by using Fourier trans-
form as [13]:

φ̃,zz +m2φ̃ = 0, ψ̃,zz + n2ψ̃ = 0 (6)

σ̃zz|z=h/2 = σ̃z, σ̃zz|z=−h/2 = 0, τ̃zx|z=+h/2 = τ̃ , τ̃zx|z=−h/2 = 0 (7)

where m2 =
ω2

cL2
− k2, and n2 =

ω2

cT 2
− k2. cL and cT are longitudinal (pressure) and

transverse (shear) wave speeds of the bulk material, respectively. k denotes the wave
number.

The spatial amplitudes τ̃ and σ̃z of τ and σz can be obtained by applying Fourier
transform to Eqs. (3) and (4), respectively, which are defined as

τ̃ = C1τ̃1 + C3τ̃2 + C5τ̃3
σ̃z = C1δ1σ̃1 + C3(δ2σ̃2 + δ3σ̃3) + C5(δ2σ̃3 − δ3σ̃2)

(8)

where τ̃1, τ̃2, and τ̃3 are Fourier transforms of sinh(px), sinh(αx) cos(γx), and cosh(αx) sin(γx),
respectively. Similarly, σ̃1, σ̃2, and σ̃3 resulted from the Fourier transform of cosh(px),
cosh(αx) cos(γx), and sinh(αx) sin(γx), respectively. The general solution of Eq. (6)
can be obtained as

φ̃ = A1 cos(mz) + A2 sin(mz), ψ̃ = B1 cos(nz) +B2 sin(nz). (9)

A1, A2, B1, and B2 are unknowns to be determined by applying boundary conditions
from Eq. (7). The longitudinal displacement and strain in wave number domain can be
defined in terms of potential functions as

ũx = ikφ̃+ ψ̃,z, ε̃x = −k2φ̃+ ikψ̃,z. (10)

Applying inverse Fourier transform to the resulting solution in wave number domain
and using the residue theorem, the in-plane strain εx at the top surface of the plate is
obtained in the physical domain as

εx = εx(x, h/2) = εSx(x) + εAx (x). (11)



TABLE II. MATERIAL PROPERTIES.

Material Y G ν d31 d32 µ19 µ39 ρ
(GPa) (×10−12mV−1) (µC/m)

Al [14] 70 - 0.33 - - - - 2700
Adhesive [13] 4.7 1.67 - - - - - -

BST [7] 150 - 0.3 -47.616 -47.616 8.5 100 -

with

εsx(x) =
1

2µ

∑
kS

τ̃(kS)N τ
S(kS)

D
′
S(kS)

eik
Sx − i

2µ

∑
kS

σ̃z(k
S)Nσz

S (kS)

D
′
S(kS)

eik
Sx

εAx (x) =
1

2µ

∑
kA

τ̃(kA)N τ
A(kA)

D
′
A(kA)

eik
Ax − i

2µ

∑
kA

σ̃z(k
A)Nσz

A (kS)

D
′
S(kS)

eik
Ax

(12)

where µ is Lame constant and

N τ
S(k) = kn(k2 + n2) cos(mh/2) cos(nh/2)

DS(k) = (k2 − n2)2 cos(mh/2) sin(nh/2) + 4k2mn sin(mh/2) cos(nh/2)
Nσz
S (k) = k2(k2 − n2) cos(mh/2) sin(nh/2) + 2k2mn sin(mh/2) cos(nh/2)

N τ
A(k) = −kn(k2 + n2) sin(mh/2) sin(nh/2)

DA(k) = (k2 − n2)2 sin(mh/2) cos(nh/2) + 4k2mn cos(mh/2) sin(nh/2)
Nσz
A (k) = k2(k2 − n2) sin(mh/2) cos(nh/2) + 2k2mn cos(mh/2) sin(nh/2)

(13)

Similarly we can obtain the expression for the displacement ux in the physical domain.

RESULTS AND DISCUSSION
VALIDATION

To validate the present analytical model, the obtained results are compared with the
pin-force-moment (rigid bonding) model by considering both interfacial shear and peel
stresses. For this purpose, barium strontium titanate (BST) is chosen as the surface-
bonded transducer having a length of 14 mm. Unless stated otherwise, the thickness of
the transducer and host plate is taken as 0.1 mm and 1.6 mm, respectively. The material
properties for host plate, transducer, and adhesive are listed in Table II. All the results
are obtained by considering plane strain condition for both the transducer and the host
plate.

The BST patch transducer is actuated with a Hann window modulated five cycle
tone burst signal of 20 V amplitude. The input signal is given by V (t) = Vo

2
[1 −

cos(2πt/TH)] sin(2πft), where f denotes the central frequency of the excitation and
TH represents the Hann window length related to the number of cycles NB in the tone
burst as TH = NB/f .

First, to validate the proposed model in respect of Lamb wave generation and propa-
gation, the in-plane stain εx generated at the top surface of the plate at a distance of 300
mm from the center of the actuator, is compared in Fig. 2 with the rigid bonding model.
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Figure 2. Longitudinal strain εx at the top surface of the host plate at a distance of 300 mm for
actuation under five-cycle modulated tone burst excitation of 160 kHz central frequency consid-
ering (a) piezoelectric effect and (b) flexoelectric effect

For this, we have considered an adhesive of 1 µm thickness. For excitation input signal
of 160 kHz central frequency is considered. The results illustrated in Figs. 2 (a) and (b)
are obtained by considering the piezoelectric effect and flexoelectric effect, respectively.
For both the cases, the amplitudes of both S0 andA0 modes show an excellent agreement
with the pin-force-moment model solution.

EFFECT OF ADHESIVE THICKNESS ON THE RESPONSE

In this section, we study the effect of adhesive thickness (ha) on the Lamb wave
response εx for two different central frequencies. The results are obtained at a distance
stated previously by considering only the flexoelectric effect.

Figure 3 illustrates the effect of adhesive thickness on εx for 100 and 300 kHz exci-
tations. For 100 kHz, we can see from the graph, there is no difference in the waveform
of S0 mode as the adhesive thickness increases. However, for 300 kHz, the waveform of
S0 mode slightly changes for adhesive thickness 60 µm (Fig. 3 (b)). On the other hand,
for both frequencies, the amplitude of A0 mode decreases as we increase the adhesive
thickness up to 20 µm. Subsequently, a further increase in the adhesive thickness does
not affect the amplitude of A0 mode.

CONCLUDING REMARKS

In this article, we have developed an analytical model for Lamb wave propagation
in plate-like structures using flexoelectric-piezoelectric transducers bonded to the top
surface of the host structure through an adhesive layer. In this model, we have considered
both interfacial shear and peel stresses at the interface of the transducer and plate. A two
dimensional elasticity solution is obtained for Lamb wave propagation in the host plate
under the interfacial stresses obtained from our previous work considering plane strain
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Figure 3. Effect of adhesive thickness ha on longitudinal strain εx at the top surface of the host
plate at a distance of 300 mm under five-cycle Hann window modulated tone burst with central
frequency of (a) 100 kHz and (b) 300 kHz considering flexoelectric effect

conditions.
The Lamb wave response obtained with a very thin adhesive layer of 1 µm thickness

is found to match with the pin-force-moment model by considering piezoelectric and
flexoelectric effects separately. For 100 and 300 kHz excitations, the S0 mode waveform
does not show any significant variation with the increase in adhesive thickness. However,
the amplitude of A0 mode is significantly altered by the adhesive thickness upto 20 µm
for this study beyond which it does not show much change with the increase of adhesive
thickness.
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