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ABSTRACT 

The structural performance assessment of bridges is a crucial issue for managing 
transportation infrastructure systems in EU countries as traffic loads and structural age- 
ing continues to increase. Weight-in-Motion (WiM) systems have been developed to 
estimate the gross weight of vehicles over a bridge and keep the bridge load under 
control. However, WiM systems are costly in procurement and installation; alterna- 
tive approaches that aim to be more scalable and cost-effective are needed to respond to 
the need to monitor large-scale infrastructures. This work explores an innovative zero- 
incremental cost approach based on raw vibration data extracted from a system already 
deployed for Structural Health Monitoring (SHM) and based on MEMS accelerometers. 
A novel signal processing and classification pipeline has been developed to differenti- 
ate vehicles into three categories: light, i.e., less than 10 tons; heavy, i.e., between 10 
and 30 tons; and super heavy, i.e., above 30 tons, using only features extracted from 
vibration data. The results show that this framework can distinguish vehicles with an ac- 
curacy of 96.87%, utilizing the mean-shift unsupervised clustering model. This method 
has the potential to be a significantly cost-effective and scalable solution for monitoring 
bridge loads compared to WiM systems, as it leverages existing SHM infrastructure and 
affordable MEMS sensors to provide real-time information on vehicular loads. 

 
INTRODUCTION 

Traffic load estimations are typically the most significant variable action to consider 
when assessing existing infrastructures. The growing traffic of heavy trucks and vehi- 
cles has become one of the critical threats to the integrity of bridges and viaducts, and 
road operators require more and more continuous control in terms of traffic volume and 
vehicular loads [1] [2]. Although the recent advancements in traffic estimation show 
promising practical models, there is still a need for accurate and real-time classification 
of vehicles in terms of dynamic weight estimation over bridges [3]. While using WiM 
measurements provides a precise assessment of the weight of vehicles passing over a 
bridge, WiM systems are expensive to install and maintain. In an effort to ease cost 
concerns, several studies have explored using different sensors: such as magnetic sen- 
sors [4], smart cameras [5], accelerometers, infrared, ultrasonic, and fibre optic acoustic 
sensors [6]. 
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Figure 1. (left) SHM Framework and (right) Raw data & the extracted energy of raw data.

MEMS accelerometers can be used for vehicle classification and attract much inter-
est as they are extremely affordable and durable, requiring minimal maintenance. These
devices already used for SHM [7–9] demonstrated to be very accurate and comparable to
more expensive traditional inertial sensors based on piezoelectric materials [10,11]. For
example, [12] compared analogue MEMS-based accelerometers with traditional SHM
instrumentation for modal analysis with three different excitations. The quality of the
measurements in terms of noise level, frequency and sensitivity metrics was comparable.
The most reliable analysis of digital and analogue MEMS sensors is provided by [13],
where several commercial MEMS devices were used as a reliable replacement for ex-
pensive piezoelectric sensors. Pioneering work [14] shows how a four-step algorithm
can turn a MEMS-based SHM installation into a vehicles and traffic estimation sys-
tem. However, [14] has not provided any evaluation of the vehicle classification, as they
merely provide a student test for the two clusters.

The main contributions of this work are: i) Using a real-case viaduct scenario with
raw data acquired from the accelerometers and labelled data captured by Weight-In-
Motion (WiM) from a viaduct in regular operation on a highway in northern Italy. ii) The
introduction of a new framework for vehicle classification deploying only raw vibration
data that can successfully identify the vehicles into three clusters, namely light, heavy,
and Super-heavy clusters, with a classification accuracy of 96.87% in the best case sce-
nario. iii) The presentation of a comparison between the unsupervised Machine Learn-
ing (ML) models, namely K-means, mean shift, and Gaussian Mixture Model (GMM),
showing that mean-shift outperforms k-means by an average of 3.91%, while it is more
robust than GMM since the mean-shift has a standard deviation of 3.60% in classification
accuracy for different sections of the bridge whereas it is 5.91% for GMM.

The paper is organized as follows. The Case study Section briefly describes the SHM
installed over the viaduct. Then, Methodology Section describes the methodology used
to classify the vehicles and presents the main contribution of this work in three sec-
tions preprocessing, feature extraction, and classification. Experimental Results Section
describes experiments and results. Finally, Conclusions Section draws conclusion.



Figure 2. The proposed framework of this work: (A) Two data acquisition systems of our sys-
tem, namely, Accelerometer and WiM device. (B) Data pre-processing chain applied to 2D raw
vibration to extract a 1D informative trace. (C) Vehicle identification and feature extraction. (D)
Labelling the extracted features by deploying WiM data joining the timestamps of the two sys-
tems. (E) Training and (F) Different validation studies.

CASE STUDY

Bridge Structure

The case study is a roadway bridge in normal operation, made of 18 spans, 2 lanes,
and 583 meters long. The structure is a reinforced concrete girder bridge with an isostatic
static scheme. All the spans have the same length, equal to 20 meters, except for the first
span, 10 meters long, and the 10th span, 29.5 meters long. The monitoring system
deployed by Sacertis Ingegneria recorded the data since the beginning of 2022.

SHM Framework

Sensor Nodes. The SHM system consists of 282 MEMS biaxial clinometers, 142
MEMS triaxial accelerometers, and 3 gateways which transmit the data to the cloud.
Fig. 1 (left) shows a block diagram of the sensor nodes installation over one bridge span.
The MEMS accelerometers are connected via CAN-BUS to the gateway. They are three
axes linear accelerometers with ±2 g full scale and 100 Hz sample rate. Accelerometers
are equally distributed between the 18 spans: on each span, the accelerometers monitor
the two external beams. For each beam, three sensors were installed at the quarter, the
third, and the midspan of the beam.

WiM. The WiM sensors are placed about 600 meters before the viaduct, in a section
without highway exits or parking areas. The WiM data serve as ground truth in our work
and provide high-fidelity information about the traffic on the bridge, including the lane
of the detected vehicle, its length, weight and speed, and the number of vehicle axles.

METHODOLOGY

This section describes the main contribution of this work, which is a framework to
classify the vehicles based on their gross weights. Initially, similar to [14], the raw vibra-
tion data are fed to a preprocessing chain to extract a smooth trace that eases identifying
vehicle passage over the viaduct. Next, Principal Component Analysis (PCA) is applied
to the smooth traces to identify the vehicle’s passage. Furthermore, for an individual
vehicle’s passage, five different features, namely, Maximum Amplitude, Standard Devi-
ation (std), Mean, and Line Length, are computed to represent each vehicle. Then, the
labelling step is performed to label the extracted features. WiM data are aligned with
the extracted features to label the data. Finally, K-means, Mean Shift, and GMMs are
deployed to cluster data into three clusters,i.e., Light, Heavy, and Super-heavy classes.

Fig. 2 illustrates the main framework of this work, distributing it in Data Acquisition,



Data preprocessing, Vehicle identification and Feature extraction, Vehicle labelling, and
Vehicle Classification.

Pre-Processing

The preprocessing stage is split into two primary sections. The initial section receives
a 2D plane of raw vibration data, specifically along the x−z axis, and derives informative
1D traces from it. These traces are coupled with Principal Component Analysis (PCA)
to calculate two thresholds for boxing a vehicle passage event. Subsequently, a vehicle
detection phase is performed utilizing the 1D traces joined with the two thresholds of
the PCA analysis. In the following, we will discuss each step of this chain.

L2 Normaliztion. To combine the information of two axes of the bridge, i.e., x
and z axis, an L2 normalization is performed to convert 2D information into 1D. L2

normalization can be extracted as follows: | · |L2 =
√
(x− x)2 + (z − z)2, where x and

z stand for the mean of the axis during a reference period of 5 minutes free of peaks. This
step is more beneficial for low-energy vibrations since capturing light vehicle passages
in both axes is not trivial.

4th order Butterworth filter. Structures Oscillate in relatively low frequencies in the
range of a few Hz. Therefore, a Butterworth filter is applied to the normalized 2D data in
order to separate low-frequency signals from high-frequency noise. Moreover, when it
comes to a viaduct where the passage of vehicles may intertwine, shortening the damp-
ing time is advantageous in detecting all peaks and preventing any overlap among vehi-
cle passages. Consequently, a 4th-order Butterworth filter is employed to maintain the
desired spectral range in the viaduct’s scenario,i.e. 0-15 Hz.

Energy Analysis. The energy of the filtered vibrations can be computed as follows:
E =

∑100
t=0 S

2
i , where Si is overlapped shifting windows of 1-second data, notice that we

take overlapping windows to avoid data loss. [14] shows that a duration of 1 second is
sufficient to ensure the detection of a vehicle vibration trigger signal.

Further, we apply exponential smoothing to the computed energies. It aids in de-
creasing the oscillation amplitude damping, considering the history of the signal. Con-
sider that energetic windows corresponding to the traces with larger amplitude could
cause multiple informative vehicle passages to be missed. Therefore, we deploy the
smoothed energies to reduce the impact of such variability.

Since the damping times of each peak differ from one another; it is necessary to
customize the identification process for individual vehicle vibration trace. To achieve
this objective, the algorithm described in the Vehicles Identification Section has been
developed by incorporating two distinct energy levels: a high threshold for initiating
and a low threshold for terminating a vehicle passage. The authors in [15] proposed a
novel solution to discriminate between an informative window, i.e., vehicle passage, and
a non-informative one, i.e., white noise. Hence, such a solution is deployed to determine
the high threshold value for the vehicle identification algorithm, which is 2.56E − 7 in
our case study.

Vehicle Identification & Feature Extraction

Initially, this module details the approach for defining a bounding box around each
vehicle and subsequently presents the statistically extracted features for the classification
of vehicles. These extracted characteristics are established attributes in time-series data
classification domains such as EEG [16] and vibration signals preprocessing [14].

Vehicle Identification. The literature [14] suggests using only one threshold for
triggering and ending the vehicle passage event; however, we decided to deploy two
thresholds to capture the whole passage time of the vehicle. While the high threshold



Figure 3. (left) Vehicle Classification based on EU Laws (right) Dataset Intervals.

initiates the vehicle passage event, the low threshold is set at the noise level ending a
vehicle passage event. Empirically, it is determined as an order of magnitude less than
the high threshold. This ensures that any energy level below this threshold is considered
noise and not part of a vehicle passage event. Finally, Fig. 1 on the right showcases the
result of vehicle boxing for 20 minutes of data.

Feature Extraction. The algorithm described in vehicle Identification Section results
in different windows of time; thus, we extracted features vastly deployed in the literature
to characterize all vehicles with the same basis. Four macro statistical features for each
vehicle passage event are considered: Maximum Amplitude, Mean, Standard Deviation,
and Line Length [17].

Data Labelling

A data labelling step is performed to assign WiM metrics, our ground-truth model,
to label the extracted features from the SHM system; hence, we can evaluate the unsu-
pervised trained models. We employed timestamps generated from the WiM and SHM
systems to establish a link between the two sets of data. Given that the WiM system
is positioned within 600 meters of the bridge, we deemed it appropriate to consider a
time interval of 2 minutes between vehicle event times and corresponding WiM data.
Note that due to the bridge’s massive weight, certain light vehicles (less than 2 000 kg)
were only captured by the WiM system rather than by the accelerometers. Consequently,
more vehicle passage events are recorded by the former compared to the latter. In each
instance of labelling vehicle events in time slots, we connected heavy vehicles with pas-
sages identified by accelerometers.

Vehicle Classification

The features obtained from the accelerometer sensors are utilized in unsupervised
classification algorithms to classify vehicles into three categories. The classification
process is based on a 4D space consisting of the aforementioned extracted features. In
this study, we have categorized vehicles into three macro clusters according to their gross
weight: light class (less than 10 000 kg), heavy class (between 10 000 to 30 000 kg) and
super-heavy class (above 30 000 kg). This categorization has been established due to the
bridge maintenance constraint that requires alarming in case of massive dynamic weight
over the bridge, which may result in its collapse or severe damage. The classification is
done in two steps, first unsupervised classification followed by a weight assigned to each
vehicle passage. In the phase of unsupervised classification, three clustering methods,
K-means [18], mean shift [19] and GMMs [20], are utilized to cluster vehicles into
three classes. These models are among the most popular models for clustering small-
size datasets and more preferred over deep models deploying Neural Networks.



Figure 4. Distribution of the extracted features over the gross weight. In green the light class, in
orange the heavy class, and in red super heavy class vehicles.

EXPERIMENTAL RESULTS

This section initially describes the deployed dataset for the results and the metrics to
assess the pipeline. Further, the last two parts of this section are dedicated to validating
the best features, classifiers, and labelling metrics for clustering vehicles into the three
classes.

Dataset

Five days of data gathered from both the sensor nodes and WiM acquisition systems
were considered for this study; hence, our dataset comprises four training days and one
validation day. The table in 3 presents the time interval of each day in the dataset, which
is mostly focused on the night since the bridge experiences low traffic volume. Further,
we could label the data from four bridge spans at each time interval. It should be noted
that the quantity of samples differs across different intervals due to potential lane changes
or velocity reductions made by vehicles. As a result, vibrations may not be discernible
from the accelerometer’s perspective and can therefore have minimal impact. We use
accuracy, the total correct classification, as metrics to validate our pipeline.

Feature Extraction & Data Labelling

The standard European laws for vehicle classification are based on the number of
vehicle axles, grouping them into 13 different classes. However, these laws do not con-
sider the gross weight and velocity of a vehicle passage, which may affect the viaduct
infrastructure’s safety, maintenance, and durability. Considering the WiM dataset, Fig. 3
depicts the statistics of each class in terms of gross weight, which is a critical metric
for bridge dynamic weight load. Fig. 3 presents that classes with more axles are not
necessarily the heaviest and most energetic vehicles to imperil the viaduct’s integrity.
Thus, a new metric must be deployed to classify vehicles as harmful or harmless to the
bridge. As a result, in this work, we deploy gross weight as a new metric instead of
the number of axles to monitor the dynamic motion over the bridge. Further, Fig. 4
shows a correlation between gross weight and extracted features to cluster vehicles with
the defined classes. Hence, the extracted features provide a feasible solution for vehicle
classification into light, heavy, and super heavy.

Model Exploration

Fig. 5 shows that classification accuracy differs from 50% worst case to 84.37%, the
best case. Further, the mean shift method surpasses the other classification approaches
regarding classification accuracy with an 84.37% score. Furthermore, the mean shift al-
gorithm exhibits superior robustness and adaptability to diverse data distributions com-



Figure 5. (left) Classification Accuracy of the models and (right) hyperparameter exploration
results.

pared to other methods. Notice that while the span moves from 02 to 05, there is a
fluctuation of up to 9% for the mean shift, whereas other classification algorithms dis-
play variations ranging between 10% to 35%, changing the training set from one span
to another. Finally, Fig. 5 depicts that GMMs share similarities with mean shift and
K-means, making them highly comparable in classification accuracy. By simply altering
the variance parameter, one can achieve similar results to either of the aforementioned
methods.

In conclusion, the mean shift method is preferable for analyzing and clustering vehi-
cles based on their impact on bridge infrastructure.

CONCLUSIONS

In this work, we addressed the issue of the classification of the vehicles that pass over
a bridge using accelerometer data in an unsupervised manner. To do so, we compared 3
state-of-the-art algorithms named K-means, mean shift, and GMMs showing that mean
shift is more robust along all the spans with a classification accuracy over 77% in the
worst case and 84.37% in the best-case scenario. Moreover, we performed a hyperpa-
rameter exploration over the radius of the mean shift kernel, and we showed that the best
result is with 0.15 cases since it reaches a classification accuracy of 96.87% with span
number 2.
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