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ABSTRACT

Vibration based Structural health monitoring (SHM) is an emerging field in Civil
engineering, which evaluates the structure’s integrity and performance. It facilitates
the early identification of damage/deterioration and reduces maintenance costs. Due to
technological development in research nowadays, sensors play a critical role in SHM, by
offering consistent and reliable measurements of structural dynamic parameters, such
as displacement, temperature, strain, and vibration, thereby enabling timely detection
of potential issues, targeted maintenance, and repairs. However, choosing the correct
sensor locations on a structure can be ambiguous, hence, the development of an effective
sensor optimization technique is essential so that it can reduce the maintenance cost. This
involves identifying the most relevant parameters to monitor and determining the optimal
number and location of sensors. Too many sensors can result in excessive data and
processing requirements, leading to increased costs and reduced reliability. Conversely,
too few sensors can result in incomplete data and reduced accuracy, leading to missed
or delayed detection of potential problems. Hence, sensor optimization is necessary to
ensure optimal data acquisition and efficient monitoring. The algorithm proposed in this
study for sensor optimization employs Particle Swarm Optimization (PSO), Bayesian
Optimization (BO), and Optuna to determine the optimal sensor locations for monitoring a
structure. To achieve this, the algorithm employs modal assurance criteria (MAC), Fisher
Information Matrix (FIM), and both MAC and FIM as objective functions for each of
the optimization algorithms in addressing the Optimal Sensor Location Problem (OSLP).
The algorithm aims to provide an efficient and effective method for determining the best
sensor locations for monitoring the structure’s health and identifying system parameters,
such as frequencies, mode shapes, and damping ratios. The algorithm aims to provide
a reliable method for identifying system parameters such as mode shapes, frequencies,
and damping ratios by finding the best sensor locations. By leveraging the strengths of
PSO, BO, and Optuna, the algorithm optimizes the objective function to identify the
best sensor locations for the structure and also gives minimum and maximum number of
sensor locations for identifying the system parameters. Based on the optimized results
obtained from utilizing the optimization techniques in the OSLP, it can be concluded that
the optimal sensor locations can guarantee improved linear independence of the MSV and
are validated with experimental modal parameters. Furthermore, the proposed algorithm
can provide a reliable and efficient method for determining the best sensor locations
to monitor a structure. Such findings can greatly benefit the field of structural health
monitoring and contribute to enhanced safety and reliability of engineering structures.
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INTRODUCTION

Structural Health Monitoring (SHM) is an important process for ensuring the safety
and reliability of critical infrastructure. In SHM, sensors play a vital role in providing
real-time data on various aspects of the structure, including strain, acceleration, displace-
ment, temperature, and humidity, which help in detecting changes in structural behavior.
Continuously monitoring a structure’s integrity and performance can help detect and
address potential issues before they cause harm. Modal analysis is one of the most crucial
steps in analyzing structural health of infrastructure.

Modal analysis is a technique used to understand the dynamic behavior of structures
under different loading conditions. Experimental modal testing is used to identify modal
parameters, such as natural frequencies and mode shapes. Accurate estimation of modal
parameters relies on factors such as sensor quantity, sensor placement, excitation force,
and data acquisition system. Sensor placement is particularly critical for optimal modal
parameter estimation. The Optimal Sensor Location Problem (OSLP) seeks to find
the optimal locations for sensors that can provide the sufficient information to estimate
the modal parameters of a structure accurately. A secondary objective of OSLP is to
minimize the number of sensors required while ensuring that the chosen locations are
redundant and sufficient to provide a good estimation of the modal parameters. By using
optimization techniques, we can efficiently search for the Optimal Sensor Locations
(OSL) and minimize the number of sensors required to monitor the structure.

To solve the OSLP, selecting an efficient criterion and appropriate optimization method
is crucial. The objective is to find the minimum number of sensor locations that can
provide adequate information on the modal parameters of the structure [|1]]. This paper
uses Modal Assurance Criterion (MAC) and Fisher Information Matrix (FIM) as criteria
to solve the OSLP . MAC is used as an objective function to optimize the sensor locations
by selecting locations that have a high degree of linear independence [2} 3], while FIM
is used because it provides a way to quantify the information content of measurement
data in estimating the modal parameters of a structure [[1H3]. Using this information, it is
possible to identify the OSL that gives comprehensive structural health information while
minimizing the number of sensors required. Additionally, we use a combination of MAC
and FIM as the objective function to converge at the best possible location for a given use
case.

In this paper, the following optimization techniques have been employed; Particle
Swarm Optimization (PSO) a stochastic optimization method that can be applied to a
wide range of optimization problems, including OSLP [3-5]], Bayesian Optimization (BO)
another popular optimization method that uses Bayesian inference to optimize a function
which is particularly effective when the objective function requires a limited number
of evaluations [1,/6,7], and Optuna a Python library for hyper-parameter optimization
that is designed for machine learning tasks, but it can also be used to solve optimization
problems [6]] as optimization techniques to find the optimal values for each case while
using the mentioned criterion as objective functions [|1,4-8]]. By using these optimization
techniques, we can efficiently explore the locations for sensors and reduce the number of
required sensors for effective structural monitoring. Finally, the results obtained using
these optimization techniques are tested on a real structure and are compared to determine
the best solution.



RELATED WORK

This paper presents a study on solving the OSLP whose objective is to identify the
optimal sensor placements on a structure, aiming to enhance the effectiveness of health
monitoring for SHM using an ensemble of optimization techniques. Several studies
have proposed different optimization techniques for solving the OSLP problem. Meo
and Zumpano [2f] presented an approach for finding OSL on a bridge structure. Yi et
al. [9]] proposed method to tackle the OSLP for high-rise buildings based on genetic
algorithms, while Qin and Lin [[3] used PSO mainly. Other studies have also employed
novel optimization algorithms, such as the novel PSO algorithm proposed by Zhang and
Xing [4], and the PSO algorithm developed by Kennedy and Eberhart [5]. BO has also
been previously used in optimizing sensor placement, as demonstrated by Frazier [/|] and
the Optuna framework developed by Akiba and Sano [6f]. Yi et al. [9]] combined multiple
optimization strategies to optimize sensor placement, while Li et al. [[1]] used a hybrid
genetic algorithm and BO method to tackle the OSLP. While there have been numerous
studies on optimal sensor placement for SHM, there is still a gap in research. One of
the main reasons for the gap is the complexity and non-linearity of the problem. To the
best of our knowledge, no study has explored the effectiveness of combining multiple
optimization techniques for OSLP. In this study, we present an ensemble approach that
combines different optimization techniques to solve the OSLP problem which takes
advantage of the strengths of each individual optimization technique and combines them
to achieve a more versatile and effective solution.

METHODOLOGY

The aim of this study is to select the OSL while minimizing the number of sensors
required. The methodology proposed in this study provides a systematic and efficient
approach for selecting the optimal sensor location to monitor structural health involving
three key steps. In this methodology, firstly, modal analysis is performed on the structure
to identify the natural frequencies and mode shapes which helps us in identifying areas
of high stress or displacement in the structure. MAC and FIM are then employed as
criteria for OSLP to find locations that are critical in identifying mode shapes. Secondly,
optimization techniques such as BO, PSO, and Optuna are applied to identify the OSL.
Finally, MAC, FIM, and the combination of both MAC and FIM were used as objective
functions for each of the above optimization techniques to locate integral and critical
positions on the structure that capture the highest degree of damage and/or change in
behaviour of the structure.

Modal Analysis

A modal analysis of the structure is conducted before OSLP is implemented to gain
insight into its dynamic characteristics. This study utilized ANSYS software for the
modal analysis of structures. Structures or systems are represented as interconnected
masses and springs in modal analysis. The natural frequencies indicate the frequencies
at which the structure or system will vibrate without any external stimulus. The mode
shapes depict the deformation or vibration patterns linked to each natural frequency. The



effectiveness of optimization techniques depends on the establishment of appropriate
objective functions and coding methods.

The study collected the data by employing the ANSYS 18.1 software to develop a
finite element model (FEM) of a Cantilever beam. The objective was to identify the most
suitable positions for acceleration sensors on the beam in a single direction. The FEM
utilized 1000 potential nodes and 1000 potential degrees of freedom (DOFs) to generate
the required data for modal analysis.

Criteria for OSLP

In this paper, for evaluating the suitability of sensor locations in modal analysis using a
FEM model. The utilization of MAC, FIM, and MAC and FIM is employed for evaluating
the correlation between the mode shape vectors(MSV) at the designated measurement
coordinates. MAC and FIM both are measures of the quality of the sensor locations.
MAC quantifies how well the mode shapes are correlated with each other, while FIM
measures the level of sensitivity of the estimated mode shape to variations in the positions
of the sensors. By optimizing the sensor locations based on both MAC and FIM, we can
ensure that the mode shapes are well-resolved, robust to noise, and accurately estimate
the modal parameters of the system.

Once the mode shapes have been obtained from ANSYS, the subsequent task is
to determine the OSL. This process entails picking a subset of nodes from a set of n
nodes in the FEM. Each node i in the set of n nodes has k; degrees of freedom (DOF)
in total, forming a DOF set X consisting of a total of n = ky + ko + ks + ... + k,
DOFs. To identify the OSL, one or more criteria are utilized to select s DOFs, denoted as
Y1+ Y2 +ys + ...+ ys, from the set X. Subsequently, the accuracy of the selected DOFs
is assessed using techniques such as the MAC or FIM. If the selected DOFs exhibit an
optimal quantitative value based on the chosen criterion, they are considered the optimal
locations for s sensors.

The MAC method evaluates the correlation between two sets of mode shapes. It
is computationally efficient and suitable for analyzing large-scale structures, as it only
requires the mode shapes obtained from experimental testing or finite element analysis.
The MAC values are calculated using the following expression:
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Here, ¢,; and ¢; represent the ith and jth MSV, obtained from the FEM, respectively.
Only the selected degrees of freedom are present in these vectors. The values of the
non-diagonal terms of the MAC matrix indicate the independence of the mode shapes and
thus, sensor locations. The smaller the value the higher the independence of the mode
shapes. Therefore, the non-diagonal terms of the MAC matrix are used as a criterion for
evaluating the suitability of sensor locations.

FIM considers how sensitively the system responds to each structural parameter,
allowing sensors to be placed where they will yield the most useful data for model
updating and system identification. FIM as an OSLP criterion has the benefit of offering
a more precise and complete solution than other criteria like the MAC. Moreover, FIM

MAC;; = (1)



can handle closely spaced modes that are challenging for MAC as it accounts for the
covariance between different parameters and can effectively differentiate between closely
spaced modes. However, it may not be effective in identifying the modes that are poorly
excited or have low energy content. The selection of optimal sensor locations is achieved
by maximizing the determinant of the FIM, which is evaluated using the Frobenius norm.
The FIM is calculated as:
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Here, ¢, represents the matrix of MSV obtained from the FEM, while the covariance

matrix o corresponds to the noise inherent in the measurements. The determinant of

the FIM is maximized by selecting candidate sensor locations that lead to the largest

Frobenius norm of the FIM, given by:
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In this study, we employed a combination of optimization techniques i.e, PSO, BO,
and Optuna, within an ensemble model to address the OSLP problem. Our objective
was to optimize sensor locations, utilizing MAC, FIM, and MAC and FIM as objective
functions.

Optimization Algorithms:

PSO is a heuristic optimization algorithm inspired by the flocking behavior of birds. It
aims to solve optimization problems by utilizing a set of particles. Each particle represents
a potential solution and is initialized with a position and velocity in the problem’s search
space. The PSO algorithm iteratively updates the positions and velocities of the particles
to search for the optimal solution.

Let’s consider a D-dimensional problem space, where each particle’s position is de-
noted by X; = (X1, Xia, ..., Xip). Here, X, 4 represents the value of the dth dimension
for the ¢th particle. The bounds for each dimension are denoted as /; and u4, where
de[1,D].

The velocity of a particle is denoted by V; = (V;1, Vs, ..., V;p), which controls
the particle’s flight direction and distance. The velocity is constrained by maximum
(Vimax) and minimum (V,,;,) values. Each particle also maintains its personal best
position P, = (P;, Pp,..., Pip) and the global best position of the entire swarm
P, = (P, Py, ..., Pyp).

The PSO algorithm can be summarized by the following equations:

Velocity update equation:

Via(t+1) = w x Vi4(t) + 1 xrandl x (Pyg — Xiq(t)) + c2 x rand2 x (P, — X;4(t)) (4)

Here, V;4(t 4 1) represents the updated velocity of the particle at time ¢ + 1, Vi4(?) is
the velocity of the particle at time ¢, w is the inertia weight, ¢; and ¢, are acceleration
coefficients, rand1 and rand2 are random numbers between 0 and 1. P;; is the personal
best position of the particle, and X,4(¢) represents the position of the particle at time ¢.
P, is the global best position of the swarm.
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Figure 1. Flowchart depicting the functionality PSO

Position update equation:

In the position update equation, X; 4(¢+ 1) denotes the updated position of the particle
attime ¢ + 1, X 4(t) is the position of the particle at time ¢, and V; 4(¢ + 1) is the velocity
of the particle at time ¢ 4 1.

The PSO algorithm proceeds continually, updating each particle’s locations and
velocities, until the best solution is discovered or a certain number of iterations is reached.
Since the positions of the particles are constrained to integers, the velocities calculated at
each iteration are rounded off to the nearest integer.

BO is a technique used to optimize expensive black-box functions that do not have
a known analytical form. The goal of BO is to find the input values that minimize (or
maximize) the output of the black-box function. The implementation of BO involves
several steps. First, a Gaussian Process (GP) model is fit to the data points observed so
far, where the input values are the independent variables, and the output values are the
dependent variables. The GP model is used to model the unknown black-box function and
estimate the distribution of the function values at unobserved points. The mean function
of the GP model is often denoted by 1(z), and the covariance function by k(x, z’). The



acquisition function, a(x), is defined as the expected improvement of the function value at
a new input point, z, over the current best function value, f,,;,. The acquisition function
is often chosen to balance exploration and exploitation of the function landscape and can
be formulated as:

a(x) = E [max(fuwm — f(2),0) |z, D] (6)

where f(x) is the unknown black-box function, D is the set of observed data points,
and E/[] is the expectation operator. Then, the input values that maximize the acquisition
function are chosen as the next set of points to evaluate the black-box function. The
black-box function is evaluated at these points, and the GP model is updated with the new
data points using the Bayesian updating rule:

p(f | z,y, D) o<ply | f,2, D), p(f |, D) @)

where p(y | f,z, D) is the posterior distribution of the function given the observed
data, y, p(y | f,x, D) is the likelihood of the data given the function and inputs, and
p(f | =, D) is the prior distribution of the function given the inputs. This process of
choosing new points to evaluate the black-box function based on the GP model and the
acquisition function is repeated until a stopping criterion is met, such as a maximum
number of iterations or a minimum improvement in the function value. Overall, the
implementation of BO involves fitting a GP model to the data, defining an acquisition
function based on the GP model, selecting new points to evaluate the black-box function
based on the acquisition function, and updating the GP model with the new data. This
process is repeated iteratively until the optimal input values are found.

Optuna is a library used for hyperparameter optimization. Optuna aims to minimize
the time and resources needed to identify the best hyperparameters for a specific model
and dataset. The implementation of Optuna involves defining a search space for the
hyperparameters of the model. The search space can be defined using either a set of
discrete values, a continuous range, or a combination of both. Optuna then searches the
space of hyperparameters using various optimization algorithms. The Tree-structured
Parzen Estimator (TPE) algorithm uses two probability density functions, one for the
objective function and another for the hyperparameters and selects the hyperparameters
that maximize the ratio of these probability densities. The formula for the ratio of
probability densities is:

plz|y=1)

—— ®)

p(z |y =0)
where x is a hyperparameter configuration, y is a binary variable that indicates whether the
objective function value is above or below a threshold, and p(z | y = 1) and p(z | y = 0)
are the probability densities of x given that y is 1 or 0, respectively. To use Optuna, the user
first defines the objective function, which takes the hyperparameters as input and returns
a scalar value representing the performance of the model. Optuna then minimizes the
objective function by searching the hyperparameter space using the chosen optimization
algorithm. Overall, the implementation of Optuna involves defining the search space for
hyperparameters, defining the objective function, selecting the optimization algorithm,
and visualizing the optimization process and results. This process can be automated
using Optuna, saving time and resources compared to manual hyperparameter tuning.
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These optimization algorithms use the objective functions MAC, FIM and MAC & FIM
to evaluate the fitness of each candidate solution and to narrow the search space to find
improved solutions. These represent the quantity to be optimized, which in this study is
the location of sensors for SHM.

Objective Functions:

Objective functions are employed in OSLP to assess the calibre of a specific sensor
configuration. In OSLP, the MAC and the FIM are the two most frequently utilised
objective functions. This study uses both with an additional criterion MAC & FIM that
combines the advantages of both.

MAC AS OBJECTIVE FUNCTION

OSL can be determined by evaluating the non-diagonal elements of the MAC. A
smaller value of the MAC’s non-diagonal elements indicates better sensor placement.
The size of these non-diagonal elements can be computed by maximizing their maximum
value. Consequently, we can establish the following minimizing objective function:

F1<ylay27y37"‘7y8) = ’L;lJXmaCz] (9)



The lower the value of the objective function £ (y1, ¥2, Y3, -..., Ys), the more suitable
the sensor locations are.

FIM AS OBJECTIVE FUNCTION

By utilizing FIM as a criterion, we can guarantee the attainment of the most accurate
estimation of the experimental modal parameters. Additionally, by placing sensors on
high-amplitude vibration nodes, the measurement data’s resistance to noise is improved.
Therefore, we can establish a minimizing objective function by maximizing the Frobenius

norm ||Q||F:

Fl(y17y27y37"'7ys) :_||Q‘ ’F (10)
MAC & FIM AS OBJECTIVE FUNCTION

To ensure enhanced linear independence of MSV, improved noise resistance of mea-
surement data, and optimal estimation of experimental modal parameters, a comprehen-
sive approach is proposed in this study. The methodology incorporates the utilization of
MAC and FIM in the following manner:

The initial step involves obtaining a row vector, denoted as ®,,,,, through the primary
column QR decomposition of the transpose of matrix ®. This row vector is selected to
maximize the norm, thereby identifying the OSL based on FIM. Subsequently, matrix ®
is partitioned into two sub-matrices: ®,., and (¢ — p) X p.

By employing an optimization algorithm with an objective function F1(y1, y2, ¥3, ----Ys),
the study proceeds to derive s — p row vectors contained in the (g — p) x m matrix, along
with the p row vectors within the ®,,,, matrix. These s row vectors represent the sensor
locations that collectively minimize the non-diagonal terms of their MAC. Consequently,
the optimal sensor sites can be determined based on the MAC criterion.

RESULTS:

We took up an object to provide a demonstration of our idea, the cantilever beam. We
rendered the cantilever beam on ANSYS software and performed modal analysis on it.
The modal analysis resulted in locating 1000 points of deformation in the beam. We then
performed different optimization techniques on the 1000 points to optimize it to 15 points.
The X, Y, Z coordinates of those points are given in the Table 1 and the best result along
with actual modeshapes are given from figure 3-9.

Note: OF is Objective Function, OA is Optimization Algorithm

CONCLUSION AND FUTURE WORK:

The locations of sensors and the number of sensors used for monitoring a structure
directly affect how reliant the data and the monitoring process are. Continual use of
numerous sensors through the life of a structure can significantly add to the cost of
maintenance of the structure. By carefully selecting the locations of sensors, it is possible
to capture the most vital information about the structure’s behaviour and more accurately



TABLE I. This table shows the OSL along with their respective MAC and FIM values
upon using various optimization techniques and objective functions

OA OF OSL MAC FIM
value value

PSO MAC 322, 746, 485, 505, 337, 171, 0.119 7.463
842, 412, 132, 418, 376, 661,
995, 998, 925

PSO FIM 999, 789, 400, 977, 652, 992, 0.087 9.380
527, 998, 854, 748, 734, 482,
975, 454

PSO MACand FIM 981, 994, 471, 925, 906, 298, 0.298 9.812
933, 674, 973, 373, 316, 954,
354, 861, 923

BO MAC 821, 461, 494, 769, 635, 477, 0.115 7.838
945, 810, 886, 80, 661, 484,
993, 193, 295

BO FIM 985, 890, 870, 986, 979, 298, 0.165 8.762
403, 962, 994, 203, 360, 892,
70, 836, 224

BO MAC and FIM 247, 463, 340, 961, 216, 475, 0.141 8.267
259, 997, 500, 703, 453, 82,
879, 318, 853

Optuna MAC 993, 394, 960, 298, 996, 916, 0.103 8.619
481, 357, 990, 983, 120, 546,
329, 231, 657

Optuna FIM 247, 463, 340, 961, 216, 475, 0.141 8.267
259, 997, 500, 703, 453, 82,
879, 318, 853

Optuna MAC and 489, 579, 883, 862, 229, 616, 0.122 7.378
774, 329, 970, 494, 291, 660,
997, 929, 755
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Figure 3. Comparison of first mode shape results. (a) Modal analysis results. (b) Optimized
results.

M-2vs 2

2.006-02
0,02

001 v L *
. .
o b

-1.006-02 -0.01

M-2vs Z

1.00€-02

0.00€+00

m2
M2
L]

-2.00€-02 -0.02

4
-3.00€-02 -0.03
0.00E+00 250€-01 5.00E-01 750601 100E+00 0.2 04 06 08 1.0

z z

(a) (b)

Figure 4. Comparison of second mode shape results. (a) Modal analysis results. (b)
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Figure 5. Comparison of third mode shape results. (a) Modal analysis results. (b)
Optimized results.

assess its condition while optimizing the sensors locations. This study aims to evaluate
the suitability of sensor locations for modal analysis in a FEM model using the MAC and
the FIM.

The study uses an ensemble model of multiple optimization techniques, such as PSO,
BO, and Optuna, and uses MAC, FIM, and MAC & FIM as the objective functions
for performing optimization on sensor locations on a Cantilever beam. In conclusion,
enhancing the linear independence of mode shape MSV improves their resistance to noise
in the measurement data, leading to heightened accuracy and reliability.
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Upon implementation, we observed that: MAC & FIM as a criterion for OSLP can
improve the accuracy of the MSV by enhancing their linear independence which improves
the quality of the measurement data. By utilizing these criteria, the selection of OSL can
lead to improved results in SHM.

Optuna required significantly fewer function evaluations than BO and PSO to find the
optimal solution and it offers advanced features such as pruning and parallelization that

further improve its efficiency and scalability.

In the future, this proposed ensemble optimization approach can be applied to struc-



tures of varying sizes, complexities, and uses. The model can be further extended to
higher-dimensional search spaces and more complex structures to improve its efficiency
and accuracy. Furthermore, the robustness of the OSL can be evaluated against changes
in system parameters, such as boundary conditions and excitation force, to validate its
practical application. These future works will help to enhance the model’s applicability
and utility in real-world applications.
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