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ABSTRACT

Structural Health Monitoring (SHM) is a continuous and autonomous monitoring
technique for ensuring structural safety, integrity, and performance without affecting the
structure itself. Advances in technology help in identifying structural defects early on,
which aids in making decisions pertaining to when repair and rehabilitation are required
for civil structures resulting in saving the economy. The Internet of Things (IoT) and
cloud services paradigm extends a faster and more reliable SHM strategy. There have
been few studies, especially in data driven SHM for a while, where SHM with [oT was
implemented over traditional monitoring techniques. However, solutions presented in
the recent literature have the following drawbacks viz, latency, power consumption, and
real-time synchronization. Most approaches fail to meet real-time requirements, result-
ing in slower data visualization, retrieval, and analysis, which might lead to late warning
alarms eventually leading to catastrophic events. The present research study focuses on
these problems by building a completely feasible, cost-efficient, and scalable loT archi-
tecture utilizing AWS cloud-based services with real-time constraints. Data acquired
from the sensor nodes are transmitted via a communication module following star topol-
ogy to the fog layer (DAQ) through MQTT to the AWS cloud and is processed through
different cloud services and is visualized immediately making it an asynchronous ar-
chitecture. Also, the paper presents the tradeoffs for choosing sensors, communication
protocols, algorithms, and cloud services for an efficient and secure real-time approach
with an aim to provide a promising platform for an efficient and proactive SHM system
for civil infrastructures. Our architecture has been tested with Commercially Off-The-
Shelf (COTS) hardware on the prototype models developed in the lab and the results
have been validated for the same. The extension of this research work for real-time
applications has also been discussed.
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INTRODUCTION

The fundamental backbone of any modern society lies in its civil infrastructures and
structure. Bridges play a vital role in uniting communities and contributing to the eco-
nomic and cultural development of a country. Structural Health Monitoring (SHM)
refers to the continuous monitoring process of infrastructure assets such as building
bridges, and other structures, to evaluate their performance and integrity. The need for
SHM stems from reasons including ensuring the safety of people who use the structure,
facilitating cost-effective proactive maintenance by identifying potential issues early on,
contrary to reactive maintenance strategy, hence extending the lifespan of structures.
Therefore, SHM is an invaluable tool that can benefit various industries significantly.

One of the key parameters measured in SHM is vibrations, which are indications of
the structure’s dynamic behavior. By analyzing the vibrational patterns of a structure
over time, it is possible to identify natural frequencies and assess the effectiveness of
repairs and modifications [1]]. Recent advancements in IoT and cloud services have been
implemented to facilitate extensive research in SHM for many years as they make it
feasible to monitor structures in real-time.

The key components of typical SHM systems include the structure itself, sensors
embedded in bridges for data collection, Data Acquisition Systems (DAQ), a mechanism
for data transfer and storage, data management, and data interpretation and diagnosis
tools for visualization and analyzation collectively enabling in-depth monitoring of a
structure in real-time [2]].

Latency, arising from potential delays in data acquisition and transmission, poses
a significant obstacle to real-time monitoring capabilities and timely decision-making.
Additionally, scalability and maintainability issues emerge due to the complex architec-
ture inherent in [oT systems. Moreover, the substantial cost associated with Data Acqui-
sition Systems (DAQs) often limits the feasibility of consistent and long-term monitor-
ing, leaving structures vulnerable to potential damage. To overcome these challenges,
this research paper introduces a novel IoT architecture that leverages Commercially Off-
The-Shelf (COTS) hardware and harnesses the capabilities of Amazon Web Services
(AWS) cloud services. The proposed architecture aims to address the limitations of
current SHM solutions by offering a practical, cost-efficient, and scalable approach for
implementation in real-world scenarios. By integrating COTS hardware, efficient data
transfer protocols, and AWS cloud services, the proposed architecture enables real-time
monitoring, comprehensive data management, and advanced analytics, thereby enhanc-
ing structural health assessment. This research seeks to foster innovation in the SHM
field by promoting open development and encouraging further advancements in the do-
main.

LITERATURE REVIEW

Past research in the field of SHM has explored the development of IoT architecture
for real-time monitoring. Tahat et.al. [3]] presents an IoT system for real-time SHM
which is deployed using Azure cloud Services which includes MariaDB as a database
and a Virtual Machine (VM) for hosting a XAMPP server. Grafana and Orange data



mining tools are also used for data visualization and analysis. While this architecture
may have its own advantages, potential drawbacks still exist in terms of cost, latency,
scalability, maintenance and complexity for practical applications. Since the architec-
ture follows a server-client (request-response) model, all the requests made by the client
are processed through a central server resulting in increased network traffic which may
lead to high latency as the response time will increase for the individual requests. Adding
on to that, the server, VM and associated resources have to run consistently irrespective
of their usage, this can lead to a high rise in the cost of the system depending on the cost
scheme by Azure resulting in inefficient resource utilization. Also, maintenance and
timely updates of dedicated resources are necessary to ensure scalability and compati-
bility as the architecture relies on a centralized server, any malfunction or crash in the
server can affect the reliability of the whole system. Additionally, the implementation
of such a system requires adequate training and expertise in the respective areas. Meng
et.al. [4]] presents a system which utilizes Apache web server as a centralized server
and MySQL deployed on Alibaba Cloud with similar drawbacks of latency, scalability,
maintainability and inefficient resource utilization leading to high cost. Malik et.al. 5]
propose a low-cost [oT system with Thing speak cloud which includes drawbacks of high
latency, high intermittent data update interval and a lossy transfer of data which impacts
the real-time monitoring and accuracy of the system. Koene et.al. [6]] utilizes simple
WebSocket communication between the sensor node and the Graphical User Interface
(GUI), few disadvantages to consider is the overhead of WebSocket communication i.e.
additional information which encapsulates the actual data compared to IoT-oriented pro-
tocols can be much higher which can lead to latency as more bandwidth is consumed
which affects the actual data rates, also WebSockets follow request-response model,
where a connection request has to be made for every connection to the server, making it
inefficient while dealing with concurrent connections with increasing sensor nodes and
hence, scalability of such a system can be challenging and although it’s a connection-
oriented protocol which needs to maintain a constantly open connection consuming a
lot of power, it doesn’t offer any reliable data transfer options. Chang et.al 7] presents
an architecture with HTTP server hosted by NODEMCU which utilizes server-to-server
communication having additional drawbacks compared to a WebSocket connection with
explicit requests for every data transfer, high network overhead and high processing load
on the server which can lead to a less reliable latent system with limited scalability.
Abdel et.al [8]] developed an architecture with TCP/IP with similar drawbacks which
include large data overhead, scalability issues and potential latency.

After an extensive review of scholarly articles, several limitations have been found in
existing literature. These constraints encompass the system’s scalability and maintain-
ability, identifying the appropriate communication protocol that influences data rate and
the expenses associated with continuous monitoring. Given the need for practical and
feasible implementation of SHM systems, consideration and overcoming of identified
drawbacks is important.

STATE OF THE ART

SHM requires a high sampling rate [9] for accurately analyzing the frequency of a
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Figure 1. AWS data flow architecture.

structure i.e., the journey of data from sensors to the destination for real-time analysis
should support minimal latency and lossless transfer. AWS [10] [11] provides numerous
approaches for IoT implementation such as WebSockets, HTTP and REST API through
API gateway, TCP/IP connection through VPN or EC2 or MQTT through AWS IoT
Core. Drawbacks and challenges associated with these have been discussed with refer-
ences to the previous research conducted in this area [12]].

Figure [I] illustrates the proposed AWS data flow architecture that contributes to the
overall research study. The architecture is designed to handle the ingestion, process-
ing, storage, and presentation of data for the research study. It leverages various AWS
services to ensure scalability, resilience, and security throughout the data flow.

Data Ingestion

Among all the communication protocols supported by AWS, Message Queue Teleme-
try Transport (MQTT) protocol [13]] [14]] is used to communicate from gateway to cloud
as it is a lightweight and simple protocol i.e., it has less message overhead and much
higher data rate compared to other potential protocols. Less message overhead is pre-
ferred since the extra bits encapsulated over raw data can affect the estimated data rate.
Also, the protocols supported directly by AWS IoT are preferred keeping in mind their
easy and direct implementation. It also supports Quality of Service (QoS) for reliable
communication which enables the sender to receive acknowledgment for received data
from the receiver and if any failure occurs, data is sent again which ensures lossless
transfer. This might add comparatively more delay, but it can be neglected. To keep
the architecture simple, QoS is set to 0 indicating that the message is sent at most once
with no acknowledgment. Additionally, reliable delivery of messages remains unaf-
fected even with variable connectivity of the network in remote areas as MQTT offers
persistent connection throughout ensuring delivery of messages when the network gets
back online. As the bidirectional capability of MQTT allows it to transfer data from User
Interface (UI) to IoT devices and hence is used for configuring sensor parameters such
as data rate, acceleration range, sensitivity and power modes remotely. Also, MQTT
supports publish/subscribe paradigm which enables the receiver to subscribe to a topic



to get messages which the sender publishes to the topic. Also, the topic name should be
kept short and intuitive since it adds to the overhead. Additionally, for secure commu-
nication, a private key and a root certificate accessible through the flash memory of the
MCU are authenticated.

AWS IoT Core acts as an entry point for the data from the gateway to the AWS cloud
(Step 1). IoT rules are used to analyze the MQTT topic stream to which the data is
published and based on the SQL query specified in the rule, data is sent to other cloud
services for storage and processing.

Data Storage and Persistence

Timestream (Step 2) serves as a primary database and can be accessed through SQL
for instantaneous data retrieval and analysis and ensures real-time storage of sensor data.
Its dynamic scaling capability makes it scalable and resource-efficient. Compared to
other AWS databases like DynamoDB, it has better processing capabilities. Also, the
historical and recent data can be analyzed together leveraging the real-time Machine
Learning (ML) with AWS Sagemaker.

Data Processing and Analysis

AWS Lambda is utilized as an event-driven server that is activated only in response
to a request [[15]. SQL query specified in 10T rules is utilized to perform data filtering
and categorization based on device ID and send to different Lambda functions (Step
3) facilitating distributed computing. Backend processes such as determining the fre-
quency through Fourier transform and running various algorithms are performed paral-
lelly through Lambda functions and the frequencies obtained through different sensor
nodes are compared in Lambda function (Step 4) for damage detection in real-time.
Also, it can be used for sending alerts using AWS Simple Notification Service (SNS)
in response to significant frequency deviations. Additionally, it ensures that the service
operates in a cost-effective manner while still delivering the necessary performance and
functionality. This is a serverless and more economical approach compared to traditional
server-based solutions like AWS Elastic Compute Cloud (EC2) or physical servers.

Data Presentation and Visualization

The link between the frontend dashboard and backend Lambda function is estab-
lished with AWS API Gateway (Step 5) which uses WebSocket API for real-time, bidi-
rectional transfer. Frontend for data visualization and sensor configuration console is
deployed with AWS S3 (Step 6). Other services such as AWS CloudFront with S3 or
AWS Amplify can be utilized for more dynamic applications.

Succinctly, the cloud data flow architecture follows a series of steps for transferring
data acquired by sensor nodes through the gateway to the cloud. Firstly, data is pub-
lished into the destined MQTT topic in AWS IoT core, then through IoT rules is sent
to Timestream and respective lambda function where data is processed for every sensor
node parallelly. After that, data is received by the backend Lambda function to com-
pare and analyze the multiple frequencies of the structure and send the requested data
to WebSocket API which acts as a bridge between the frontend dashboard deployed in



08

T T T T T
LORD (G-LINK-200)
06 Developed node (LSMDS1)

Acceleration (m/sz)

06

-0.8 [

L L I I I
0 10 20 30 40 50 60 70
Time (s)

Figure 2. Acceleration value comparison of LORD MicroStrain and LSM9DSI1.

AWS S3 and the backend Lambda server. When the deployed website is accessed, a
request is sent to the API Gateway through WebSocket API which is then relayed to
the backend Lambda function through intermediary Lambda, and the data is accessed
asynchronously throughout the connection time.

CASE STUDY

For testing the proposed architecture, sensor nodes and a gateway has been developed
to test the latency and accuracy provided by the architecture. Sensor nodes and gateway
follow a star topology approach where the gateway acts as a central hub for commu-
nication between nodes and the cloud. MicroElectro Mechanical Sensors (MEMS) are
used for testing and validation. LORD MicroStrain G-LINK-200 [16] which is a high
sensitivity and less noise density sensor with a high sampling rate is compared with a rel-
atively low-priced COTS sensor, LSM9DSI1 by ST Microelectronics [17]. Sensor nodes
comprise of an accelerometer LSM9DS1 for data acquisition, NodeMCU [18] for data
processing and an XBee S2C [[19] for wireless transfer from node to gateway through
Zigbee protocol. A gateway acts as a bridge between the node and cloud interfaced with
XBee S2C for receiving data from sensors, NodeMCU and XBee Cellular LTE [20] for
remote transfer to the AWS cloud over MQTT. LSM9DSI1 is a triaxial accelerometer
with a high Output Data Rate (ODR) and sensitivity which is sufficient to be used as an
SHM vibration sensor. Additionally, it supports low-power and high-resolution modes.
The experimental setup comprises of a simple cantilever beam affixed to a clamp, with a
LORD MicroStrain sensor node and the developed sensor node installed on the opposing
surface of the beam. The dimensions of the beam are 85.5 cm x 0.4 cm. The sensors are
placed at a 16.5 cm distance from the free end.

Accuracy

LSM9DSI1 is configured to match the parameters with +-8¢g as the input range, the
Low pass filter set to 100 Hz and the Output Data Rate (ODR) set to 952 Hz which is
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Figure 3. Frequency value comparison of LORD MicroStrain and developed sensor node.

the maximum rate supported by the sensor in high-resolution mode. Since the 12C bus
connected to the sensor and SPI bus interfaced with the XBee S2C node supports a max-
imum data rate of 400 KHz and 4 Mbps respectively and XBee S2C has RF frequency
of 2.4 GHz, the ODR becomes a bottleneck.

LORD MicroStrain sensor node is configured with an input range of +-8g, with Low
pass filter set to 104 Hz with a sampling rate of 1024 Hz.

The data acquired by the LORD DAQ and proposed DAQ is timestamped and si-
multaneously stored in CSV files which are then compared in terms of amplitude and
frequency.

Figure 2)illustrates the acceleration curve by Lords and developed sensor node. Both
measurements almost overlap each other with noticeable spikes in LSM9DS1 values
which are due to the high noise density of LSM9DS1 compared to the Lords sensor.

Figure3]illustrates the frequency obtained by Lords and developed DAQ through Fast
Fourier Transform (FFT). Due to the significant differences between their sampling rate
and noise density, the percentage error in the frequency domain is 12.88%. With proper
calibration and error analysis, the developed node with the proposed architecture can be
a cost-optimized alternative for the commercial DAQs used in vibration monitoring in
the field of SHM.

Latency

The latency of the whole architecture is calculated by measuring the data with times-
tamps through serial communication with the sensor node and retrieving the same data
stored in Amazon Timestream with timestamps. Latency is calculated by the difference
between the timestamp in CSV files obtained from Timestream and serial transfer. For
every 100 data points, the mean of latency is calculated and presented in Figure [4]

Figure {] describes a relationship between latency with an increasing number of data
points when monitored continuously. As observed, latency increases from 30 to 60 ms
with an increasing number of continuous data points and duration of the connection.
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The server-based approaches previously implemented for [oT in SHM require an open
connection irrespective of usage, which can lead to an increase in latency with increas-
ing duration. The serverless architecture proposed in this paper eliminates the need for
open connection all the time and can be further optimized with selective invoking of the
Lambda function.

CONCLUSION

The advancements in IoT and Cloud services SHM has led to innovation and flexibil-
ity in the field of SHM. In this paper, a novel scalable and feasible AWS cloud architec-
ture is presented and validated in terms of accuracy and latency taking into consideration
the practical and economical implementation. To that end, a sensor node and gateway
are developed with COTS hardware and integrated with the proposed architecture. The
paper proposes a serverless, asynchronous, and reliable architecture with reduced com-
plexity of implementation, no overhead of managing the underlying infrastructure, im-
proved scalability, and cost optimization.

FUTURE WORK

The proposed architecture provides a foundation for building sophisticated SHM sys-
tems. The flexibility provided by AWS allows the architecture for further collaboration
with other AWS services. The latency analysis depicts if the duration of monitoring is
kept short, the latency will be significantly less compared to longer durations. Taking
this into consideration, further optimizations for data acquisition and transmission can
be added by leveraging the real-time ML analysis provided by AWS Sagemaker, gener-
ating a threshold frequency and only sending the data if a change in threshold is detected.
As the architecture is based on services that offer pay according to the use system, cost
optimizations can be implemented based on the duration for which these services are
used. Also, the development of a sensor node, a protocol for communication between
the sensor node, and a gateway for reliably acquiring data from the nodes is still an area
with potential research.
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