
ABSTRACT

This study presents a heterogeneous sensor placement optimization framework us-
ing deep reinforcement learning (DRL) that considers system parameter uncertainty.
The sensor placement problem is a well-established combinatorial optimization problem
characterized by inherent parameter uncertainties that affect system responses that sen-
sors measure. These uncertainties render deterministic solutions insufficient and necessi-
tate a computationally tractable approach to account for the uncertainties. The proposed
method incorporates a Markov decision process (MDP) as a stochastic environment, and
a sensor placement agent trained using DRL. The agent’s objective is to maximize the ef-
fectiveness of sensor placement within a system by selecting sensor types and locations.
The agent’s sequential decision-making is guided by a reward function that is designed
based on the observability Gramian, calculated using sampled parameter values from an
a priori distribution. The proposed approach is validated through simulation of a case
study involving heterogeneous sensors in a shear building model with results compared
to those from an evolutionary algorithm. The results show that the sensors selected by
DRL method match the CMA-ES algorithm with the advantage of having information
about relative importance of the selected sensors.

INTRODUCTION

Sensor networks are critical components of engineering systems, providing valuable
data for informed decision-making. The types of sensors used in various engineering
applications are diverse, including temperature, pressure, motion, and chemical concen-
tration sensors. Collected data can be used for diverse purposes, such as fault detection,
environmental monitoring, and process optimization. The effective design of sensor net-
works is crucial to making informed decisions based on sensor data. In practice, the
number of sensors is often limited by budget constraints, so it is essential to carefully
choose the locations of sensors to obtain the most valuable information. This objec-

Amin Jabini, PhD Student, Sonny Astani Department of Civil and Environmental Engineering,
University of Southern California, Los Angeles, CA, USA. Email: jabini@usc.edu. Erik A
Johnson, Professor, Sonny Astani Department of Civil and Environmental Engineering,
University of Southern California, Los Angeles, CA, USA.

Heterogeneous Sensor Placement Under
Uncertainty

AMIN JABINI and ERIK A. JOHNSON

tive forms an optimization problem, where the goal is to find the most cost-effective
sensor configuration, i.e., the most informative set of measurements [1]. The discrete
optimization problem of sensor placement is NP-hard [2]. The number of solutions
scales factorially in the number of sensor location-type pairs. For example, for a system
with 20 possible sensor locations, the number of choices for 6 sensors of 3 sensor types
exceeds 50 million. This problem becomes even more computationally costly when
robust decisions under uncertainties are crucial, such as robot sensor placement where
considering worst-case scenarios in sensor decision-making is important [3]. The ob-
jective of the optimization problem in sensor placement depends on the application and
the goal of the instrumentation. In structural health monitoring, numerous criteria have
been utilized [4]. Some researchers have used measures based on the Fisher Information
Matrix (FIM). Since FIM is related to the expected estimation covariance by the Cramer-
Rao inequality, objectives such as the minimum eigenvalue, the determinant or the trace
of the inverse of FIM are connected to the lower bound for the estimation uncertainty.
Other researchers used objectives based on the observability Gramian [5]. The minimum
eigenvalue of the observability Gramian is a measure of the output energy of the least
observable state [6]. Multiple optimization methods have been proposed in the literature.
An early approach is to use forward or backward sequential optimization algorithms [7],
where sensors are added or removed at each step, observing the behavior of the cost
function. However, the nonlinear and dependent nature of the interaction between sensor
locations often results in suboptimal solutions, and the behavior of the cost function may
not be monotonic for all cost functions. Another category of methods commonly used is
mixed integer programming, which has been shown to scale exponentially in the number
of binary variables and is not computationally tractable for large systems [6]. A popular
category of approaches is meta-heuristic algorithms, such as swarm intelligence-based
methods [8]. However, these methods require significant computing power and cannot
guarantee a globally optimal solution. Another disadvantage is that the results of these
methods are not reusable in similar systems.

The recent breakthroughs in deep reinforcement learning (DRL) in decision mak-
ing and optimization problems have attracted the interest of researchers across various
engineering domains. DRL has demonstrated promising performance in optimization
problems, including resource management [9], chip design [10], and life-cycle main-
tenance (Andriotis and Papakonstantinou 2019). Herein, we formulate the fixed-budget
heterogeneous sensor placement problem under uncertainty with a Markov decision pro-
cess (MDP), where the state is a binary vector of sensor configurations, and actions are
the integers of sensor type-location pairs. We apply a DRL algorithm called deep Q-
Network (DQN) to train the sensor selector agent. We consider the normalized observa-
tion equation and use the increase of the minimum eigenvalue of the normalized observ-
ability Gramian by each action as the reward for each step. We simulate this approach
for a small-scale 3-DOF system with three sensor types and compare the results with
a genetic algorithm using CMA-ES strategy [11] that is known to work with stochastic
fitness functions.

PROBLEM FORMULATION

For a system with uncertain parameters ✓, n candidate sensor location, and p avail-
able sensor types, the objective is to select m sensor location-type pairs. The sensor
configuration can be represented by a binary state vector s, which is part of a finite state
set S . In a greedy approach, sensors are added sequentially within a horizon of m. At
each step, a location-type pair is selected from an action set A, i.e., the integers from 1
to np, and the corresponding element of the state vector is updated to have a value of 1.
In a non-greedy approach, such as CMA-ES, the population consist of binary vectors,
and the budget constraint is incorporated into the fitness function by with a large penalty
function.

Deep Reinforcement Learning

To solve the heterogeneous sensor placement problem with DRL, the Markov deci-
sion process (MDP), which uses transition probability model P based on the probability
of sensor failure (which is assumed to be 0 in this paper) and a reward function r (s, a).
For a sensor-location pair represented by action a, the next state s

0 is s + ea with the
probability of 1 � pf (a) or s with the probability pf (a), where pf (a) is the probabil-
ity of failure of the sensor selected in action a and ea is a unit vector with 1 in index
corresponding to action a. In this setting, the agent selects an action at each step, the
environment updates the state, and a reward denoted by r (s, a) is provided to the agent.
This process is repeated for m steps in each episode. The agent stores the collected
transition data, i.e., tuples of (st, at, st+1) in its buffer and uses it to update its policy.
The objective of the agent is to maximize its expected future reward. The agent’s policy
can be represented by the function ⇡� (at|st), which is parameterized by vector �. The
agent’s goal can be expressed as

J (�) = E⌧⇠p(⌧)

"
mX

t=1

�t�1r (st, at)

#
(1)

in which � is the future discount factor, ⌧ is the trajectory [a1, s1, r1, . . . , am, sm, rm]. A
category of reinforcement learning methods is based on a value function approximation.
Let Q (st, at;�) be the Q-function, which estimates the true Q-values Q (st, at) that are
defined as expected value of action at in state st, and let � be the weights of the neural
network that represents the Q-function. In standard Q-learning, the update rule for the
Q-function is given by:

Q (st, at;�) Q (st, at;�) + ↵


r (st, at) + �max

at+1

Q (st+1, at+1;�)�Q (st, at;�)

�

(2)
where ↵ is the learning rate. In the DQN algorithm, two separate Q-functions are used:
target network Q (st, at;�), and prediction network Q0 (st, at;�0). At each time step, the
target network is used to select the action with the highest Q-value (in practice, using
an ✏-greedy approach), and the prediction network is used to estimate the value of that

action in state st. The update rule of the prediction network is as follows:

Q0 (st, at) Q0 (st, at)+↵
⇥
r (st, at) + �Q0 �

s
0, argmaxat+1

Q (st+1, at+1)
�
�Q0 (st, at)

⇤

(3)
in which the parameters � and �0 are dropped from the corresponding Q-functions for no-
tational simplicity. The target network is updated with a fixed frequency by updating the
parameters � to be �0. The reward function is based on the minimum eigenvalue of the
observability Gramian, denoted by �min(Wo), for the normalized observation equation
ey = R

�1/2
yt = R

�1/2
H(st; ✓)x+R

�1/2⌫, where R is the covariance of the zero mean
Gaussian noise ⌫. This normalization makes the observability equation and, hence, the
observability Gramian dimensionless. Therefore, different measurement types become
comparable. This also incorporates the sensor quality in the reward function. In each
episode, the values of uncertain parameters are sampled from associated probability dis-
tributions and the reward function is calculated based on the sampled values. In order
to make the reward non-sparse, instead of the lumped-sum reward in the final step of
selecting the sensors, the reward function is defined sequentially as:

r(st, at; ✓) = e�min(st+1;✓)� e�min(st;✓) (4)

in which e�min(st+1;✓) is the minimum eigenvalue of the normalized observability Gramian
calculated based on sample values ✓.

Covariance Matrix Adaptation Evolution Strategy

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [11] is used as a gradient-
free optimization method to find the best solution in a high-dimensional space. CMA-ES
generates individuals with a probabilistic search strategy, updates the mean and the co-
variance matrix based on the quality of evaluations [12], and explores the search space
to converge to the optimal solution for stochastic objective functions. The method is
adapted to binary vectors by projecting search points to the binary vector space. The fit-
ness function is the minimum eigenvalue of the normalized observation. Solutions with
more than m sensors are given a large negative fitness.

RESULTS

The DRL framework for sensor placement is applied to a 3-DOF shear building struc-
ture that is intended to be equipped with three sensors of three possible sensor types:
drift, drift velocity, and absolute acceleration. The diagonal values of noise covariance
for each of these sensor types are 3⇥ 10�7 m2, 10�5 m2/s2, and 3⇥ 10�3 m2/s4 respec-
tively. The agent’s policy is constructed using a three-layer neural network with 12 units
in the hidden layer and 9 units in the input and output layers, that corresponds to 9 sen-
sor type-location pairs. The activation functions are Rectified Linear Unit (ReLU) and
linear function for the first two layers, respectively. The value of each unit in the output
layer represents the corresponding Q-value for each action. The agent is trained for 4500
episodes. Figure 1a shows the average performance of the agent in training, plotted as
a moving average with a window size of 200, and Figure 3 illustrates the exploration

� ���� ���� ���� ����
(SLVRGH

�

�

�

$
YH
UD
JH
�UH
Z
DU
G

�H�

(a) Average reward of DQN algorithm

� �� ��
*HQHUDWLRQ

���

���

���

%
HV
W�U
HZ

DU
G

�H�

(b) Best individual reward in CMA-ES

Figure 1. Comparison of the performance of DRL and CMA-ES methods

in sensor configuration space. Both of these figures show that the agent has converged
after 1500 episodes and the occasional exploration is due to ✏-greedy action selection.
The sensors ultimately selected by the trained policy are drift velocity sensors for the
second, first, and third floors in sequential order. This includes the sequential order since
the discount factor � is less than one and reward function is designed to be sequential.
The agent’s performance demonstrates parity with the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) algorithm, as depicted in Figure 1b. The CMA-ES algo-
rithm was simulated with a population size of 80, selecting the top 40 individuals in each
generation to produce offspring. The algorithm was configured with a crossover proba-
bility and mutation rate set to 0.6 and 0.15 respectively. The initial search points were
generated based on a Normal distribution, with a mean of 0.5 and a standard deviation
of 1 for each vector element. Figure 2 provides a visual representation of the average
state of the top 40 individuals across the simulation. The selected sensors in CMA-ES
validates those selected by DRL but, unlike DRL, it doesn’t have any information about
their sequential importance.

Figure 2. The average of top 40 individuals in generations

D
rif
t

D
rif
t

ve
lo
ci
ty

A
bs
.

ac
ce
le
ra
tio
n

0 1000 2000 3000 4000
Episode

1

2

3

1

2

3

1

2

3

Figure 3. The explored sensor configurations during the training

CONCLUDING REMARKS

This study uses DRL as a stochastic optimization framework for a heterogeneous
sensor placement problem utilizing normalized observability Gramian enables compar-
ing different sensor types. The framework is applied to a synthetic example of 3-DOF
structure and the results are validated with an evolution-based method. DRL has the
advantage of reusablity of the output, i.e., the trained policy, may be applied to similar
problems through transfer learning. Another advantage is that use of a function approxi-
mation in DRL results in updating the approximated values for unseen states by updating
the shared function parameters based on observed states. In addition, the exploration and
exploitation is easily configurable through an ✏-greedy approach.

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial support of this work by National
Science Foundation (NSF) through grant 16-63667, and the first author’s Annenberg
Fellowship support from University of Southern California. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the NSF or USC.

REFERENCES

1. Krause, A. 2008. Optimizing sensing, Ph.D. thesis, PhD thesis, Carnegie Mellon University.
2. Bian, F., D. Kempe, and R. Govindan. 2006. “Utility Based Sensor Selection,” in Proceed-

ings of the 5th International Conference on Information Processing in Sensor Networks,
ACM, New York, NY, USA, IPSN ’06, p. 11–18.

3. Krause, A. and C. Guestrin. 2007. “Near-Optimal Observation Selection Using Submodu-
lar Functions,” in Proceedings of the 22nd National Conference on Artificial Intelligence -
Volume 2, AAAI Press, AAAI’07, ISBN 9781577353232, p. 1650–1654.

4. Ostachowicz, W., R. Soman, and P. Malinowski. 2019. “Optimization of sensor placement
for structural health monitoring: a review,” Structural Health Monitoring, 18(3):963–988.

5. Bopardikar, S. D., O. Ennasr, and X. Tan. 2019. “Randomized sensor selection for nonlin-
ear systems with application to target localization,” IEEE Robotics and Automation Letters,
4(4):3553–3560.

6. Hinson, B. T. 2014. Observability-based guidance and sensor placement, Ph.D. thesis, Uni-
versity of Washington.

7. Papadimitriou, C. 2004. “Optimal sensor placement methodology for parametric identifica-
tion of structural systems,” Journal of sound and vibration, 278(4-5):923–947.

8. Yi, T.-H., H.-N. Li, and X.-D. Zhang. 2015. “Health monitoring sensor placement optimiza-
tion for Canton Tower using immune monkey algorithm,” Structural Control and Health
Monitoring, 22(1):123–138.

9. Mao, H., M. Alizadeh, I. Menache, and S. Kandula. 2016. “Resource management with
deep reinforcement learning,” in Proceedings of the 15th ACM workshop on hot topics in
networks, pp. 50–56.

10. Mirhoseini, A., A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang, Y.-J. Lee, E. Johnson,
O. Pathak, S. Bae, et al. 2020. “Chip placement with deep reinforcement learning,” arXiv
preprint arXiv:2004.10746.

11. Hansen, N. and A. Ostermeier. 2001. “Completely Derandomized Self-Adaptation in Evolu-
tion Strategies,” Evolutionary Computation, 9(2):159–195.

12. Hansen, N. 2016. “The CMA Evolution Strategy: A Tutorial,” arXiv prepring
arXiv:10.48550.

