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ABSTRACT 
 

This study aims to develop a structural health monitoring model that autonomously 
assesses breathing-type debonds between the base plate and stiffener in lightweight 
composite structures. The approach utilizes a specifically designed deep learning 
architecture that employs nonlinear ultrasonic signals for automatic debond assessment. 
To achieve this, a series of laboratory experiments were conducted on multiple 
composite panels with and without base plate-stiffener debonds. A network of 
piezoelectric transducers (actuators/sensors) was used to collect time-domain guided 
wave signals from the composite structures. These signals, representing nonlinear 
signatures such as higher harmonics, were separated from the raw signals and 
transformed into time-frequency scalograms using continuous wavelet transforms. A 
convolutional neural network-based deep learning architecture was designed to extract 
discrete image features automatically, enabling the characterization of composite 
structures under healthy and variable breathing-debond conditions. The proposed deep 
learning-assisted health monitoring model exhibits promising potential for autonomous 
inspection with high accuracy in complex structures that experience breathing-debonds. 
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INTRODUCTION 

 

Lightweight composites have become increasingly popular in various engineering 

sectors, including aeronautics, aerospace, marine, infrastructure, and automobile, due to 

their advantageous properties such as high stiffness-to-weight ratio, fire resistance, and 

acoustic damping [1]. Bonded stiffened composites are commonly employed for  

lightweight construction in these fields [2], where different types of stiffeners are 

bonded to the base plate of the structures. However, the bond between the stiffener and 

base plate can experience breathing-type debonding caused by cyclic loading, improper 

handling, impact, and aging [3]. If left undetected, these debonds can expand over time 

and result in catastrophic structural failures [4]. Therefore, the detection and 

characterization of these hidden damages in stiffened composites are of utmost 

importance. 

Previous studies [5-6] have demonstrated the potential of structural health 

monitoring (SHM) methods based on guided wave (GW) propagation for accurate 

detection of concealed defects in complex composites with multiple layers. These SHM 

techniques, utilizing linear and nonlinear GW propagation, offer long-range monitoring 

with high sensitivity to minor defects or discontinuities in layers [7]. Typically, 

lightweight and cost-effective broadband transducers, such as a network of surface-

mounted piezoelectric lead zirconium titanate transducers (PZTs), are used in these 

SHM methods [5-6]. 

Breathing debonds in composites pose a challenge for traditional SHM methods [8]. 

The breathing-type debond can exhibit open (debond) or closed (undamaged) behavior 

due to the occurrence of "breathing" under dynamic wave loading. The breathing 

phenomenon generates nonlinear ultrasonic waves with mixed frequency-response, 

nonlinear resonance, sub-harmonics, and  higher harmonics [9]. The nonlinear response 

features are indicative of contact-type damage, such as breathing cracks or kissing-

delaminations, and are less influenced by operational conditions [10]. The generation of 

higher harmonics, associated with contact nonlinearity often observed in breathing-type 

damage, has been analyzed by various researchers [11]. In [9], the occurrence of 

contact-acoustic non-linearity (CAN) due to breathing-type cracks was investigated 

using signals from a PZT network.  

In recent years, machine learning approaches based on structural response data have 

gained popularity for autonomous condition monitoring of structures [12-13]. Deep 

learning algorithms, particularly Convolutional Neural Networks (CNN), have shown 

their effectiveness in image-based characterization of structural conditions [14]. CNN 

algorithms excel in handling grid-like inputs, such as images, and extract similar 

features from local regions with similar patterns [14]. Image-based deep learning 

involves large datasets that can be synthetically generated by adding different levels of 

noise (e.g., Gaussian zero mean noise) to actual images, a technique known as "data 

augmentation" [40-42]. Recent studies [12-14] have proposed deep learning-based 

SHM methods for autonomous assessment of static damage or delamination in 

laminated composites. However, there is a research gap in the identification of nonlinear 

ultrasonic wave features induced by breathing-type damage using an automated deep 

learning approach. This paper aims to address this gap by presenting a deep learning-

based SHM strategy. 

In this paper, a CNN-based structural health monitoring (SHM) strategy is proposed 

for automatically characterizing carbon fibre-reinforced stiffened composite panels 



(SCPs) with and without baseplate-stiffener debonds. The strategy utilizes both the raw 

guided wave (GW) signals and the filtered time-domain higher-harmonic signals. The 

characterization is achieved through a series of laboratory experiments using multiple 

SCP samples. The GW signals obtained from the experimental approaches are 

transformed into RGB scalograms (representing time-frequency information) using the 

Continuous Wavelet Transform (CWT). These scalograms are then employed as input 

to the deep learning architecture specifically designed for this purpose, enabling 

training, validation, and testing operations. 

 

LABORATORY EXPERIMENTS 

 

     The experiments involved a series of ultrasonic guided wave (GW) tests conducted 

on different healthy and baseplate-stiffener debonded samples of stiffened composite 

panels (SCPs).  

     In each SCP sample, two L-shaped stiffeners measuring 30 × 30 mm and having a 

length of 450 mm were attached to the baseplate, which had dimensions of 500 × 450 × 

2 mm. Epoxy resin adhesive was used for bonding the stiffeners to the baseplate. To 

create artificial debonds at the stiffener-baseplate interface, 0.05 mm thin Teflon films 

measuring 30 × 30 mm were placed during the manufacturing process for samples (ii) 

and (iii). A network of bonded lead zirconium titanate (PZT) transducers, with a 

thickness of 0.05 mm and a diameter of 10 mm, was mounted on the top surface of the 

SCPs. These PZTs were responsible for generating and receiving ultrasonic signals. A 

signal generation and acquisition system with a sampling rate of 1M sample/s was used 

to control the PZTs (Figure 1). The SCP samples were constructed using quasi-isotropic 

laminates with lay-up (0/90/+45/-45)s made of carbon-fiber (CFCL) and had a thickness 

of 2 mm. 
 

 
 

Figure 1. Laboratory-based experimental setup for PZT-induced GW propagation in the SCPs. 

 

Figure 1 illustrates the setup used in the laboratory for the SCP sample with the DSt2 

debond, which includes a PZT network comprising 10 sensors (S1, … S10) and an 

actuator labeled as 'A'. The excitation signal was determined through a series of trials 

involving various carrier frequencies and cycles. Among the tested signals, a 7-cycle 

tone-burst sine signal exhibited the most pronounced higher harmonics in the frequency 

domain. To identify a suitable actuation frequency, a series of 7-cycle sine waves with 

different carrier frequencies were applied through the actuator 'A', and the resulting 

signals were collected at sensor 'S3' (Figure 1). This process enabled the generation of 



a frequency-response plot, depicted in Figure 2(a), which indicated higher response 

magnitudes around 150 kHz. Consequently, a Hanning window-modulated 7-cycle 150 

kHz sine pulse, shown in Figure 2(b), was selected as the excitation signal for the 

experiments. In Figure 2(b), the Fast Fourier Transform (FFT) of the actuator signal in 

the frequency domain is presented. The actuator PZT introduces the excitation signal 

(Figure 2(a)) and initiates the propagation of guided waves within the SCP. These 

guided waves are detected by each of the PZT sensors (S1, S2, …, S10) within the 

network. 
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Figure 2. (a) Selected actuator excitation signal and (b) its FFT. 

 

 

DEEP LEARNING BASED SHM STRATEGY 

 

The proposed structural health monitoring (SHM) strategy utilizes the time-history 

signals of guided waves (GW) captured by the sensors. These signals are transformed 

into time-frequency scalogram images using Continuous Wavelet Transform (CWT) 

with the Morse Wavelet. CWT involves convolving the input dataset with a set of 

functions generated by the mother wavelet, and this convolution can be efficiently 

computed using an FFT algorithm. The output of CWT is a complex-valued function, 

except for the complex mother wavelet, which ensures that the CWT is a real-valued 

function along the positive real axis. Generalized Morse wavelets belong to the family 

of analytic wavelets, and their Fourier transform is strictly positive along the real axis. 

CWT is particularly useful for analyzing signals with time-varying frequency and 

amplitude, as well as localized discontinuities. The resulting CWT produces RGB 

scalograms, which provide time-frequency spectra. 

The dominant frequencies and corresponding scales extracted from these RGB 

scalograms are utilized to train and validate a signal classifier based on a Neural 

Network. These scalograms serve as input to the deep learning network, enabling the 

training and characterization of two distinct SCP classes: (i) UD and (ii) DSt. 

Figure 3 illustrates the schematic representation of the SHM strategy, which 

employs a CNN-based deep learning approach for the automatic assessment of 

breathing debonds in SCPs. The training, validation, and testing processes of the 

designed CNN architecture are explained in detail below. 

 



 
 

Figure 3. Deep learning based SHM strategy for healthy/debond SCP classification. 

 

Figure 4 displays a block diagram illustrating the architecture of the designed 

CNN, which consists of six different layers. In this problem, each layer of the CNN 

performs specific functions, and a concise overview is provided here. For a more 

comprehensive understanding, refer to the detailed description in [15]. 

 
 

Figure 4. Designed architecture of the CNN for structural classification. 

 

In the CNN algorithm, the input scalograms are first converted into RGB pixels 

and then fed into the network. In the present problem, each of the Red, Green, and Blue 

channels (i.e., RGB) has a dimension of [292×219 pixels]. Separate convolution kernels 

are assigned to each pixel matrix, and a bias is introduced after the convolution process. 

The outputs obtained from these three channels are combined to generate the output for 

this particular layer. To prevent any loss of information in subsequent layers, zero 

padding is applied after the convolution. The values of the bias and convolution kernel 

weights are updated using back-propagation. 

 

RESULTS AND DISCUSSION 

 

Experimental GW signals are collected for various cases. In Figure 5, representative 

GW signals obtained from the undamaged and damaged cases are displayed. It is 

observed that the GWs propagating through the SCP at 150 kHz exhibit multiple GW 

modes.  
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Figure 5. Typical GW signals correspond to the healthy (UD) and debond (DSt) cases. 



The frequency-response analysis of the undamaged and debond-affected signals is 

presented in Figure 6, indicating the presence of higher harmonics resulting from the 

breathing phenomenon in the debond region. Notably, the second harmonic (HH1) is 

prominently observed in all debond cases.  
 

 
 

Figure 6. Healthy and breathing-debond informed raw GW signals in the frequency domain. 

 

For the debond cases (DSt) and various actuator positions for the healthy cases (UD), 

experimental ultrasonic signals in the time domain are recorded from 10 PZT sensors. 

The GW dataset comprises two main classes, namely UD and DSt. In each case, the 

GW signals are captured from the 10 PZT sensors. These original time-domain signals, 

with a fixed window size of 800 microseconds, are then transformed into time-

frequency CWT scalograms, as illustrated in Figure 7. The dimensions of each RGB 

scalogram image are determined to be [840×630×3] (length×width×channels) pixels. 
 

 
 

Figure 7. Reduced CWT scalograms of the recorded GW signals corresponding to (a) UD and (b) Dst. 

 

          The scalogram sizes (in pixels) were reduced to [292×219×3] to reduce 

computational costs. Additionally, 0-mean Gaussian noise ranging from 10% to 30% 

was randomly selected and added to the resized CWT scalograms for image 

augmentation, as illustrated in Figure 3. Gaussian noise follows a normal distribution, 

and for image augmentation, a random Gaussian function is added to introduce this 

noise. The zero mean value of the noise ensures that the positive and negative noise 

cancel each other out in the system, resulting in no net disturbance. A total of 3000 

scalograms were obtained, of which 80% (i.e., 2400 scalograms) were used for training, 

10% (i.e., 300 scalograms) for validation, and the remaining 10% (i.e., 300 scalograms) 

for testing the trained network. The deep learning network, described in Section 4, was 

trained, validated, and tested using datasets consisting of resized scalogram images 

corresponding to the UD and DSt classes. A 10-fold training/validation/test process was 

conducted to ensure the stable performance of the deep learning network. The 3000 



images belonging to the UD and DSt classes were divided into 10 parts, with 300 images 

in each part. During training, Stage 1 used part-1 for testing and parts 2 to 10 for 

training/validation. Similarly, in Stage 2, part-1 was used for testing, and parts 3 to 10 

were used for training/validation. This process was repeated for Stages 3 to 10 to 

improve confidence in the training progress. The validation accuracy and loss curves 

exhibited some oscillations during the early epochs due to the limited number of images 

per batch. After each batch passed through CNN, updated weight values were applied 

proportionally to all classes to prevent overfitting. To train the network, 10 epochs with 

31 iterations per epoch were considered. Figure 8 illustrates a typical training and 

validation result, showing the validation accuracy and loss. The 10-fold training and 

validation results yielded an average accuracy of 97.4%.  

 

 
 

Figure 8. Training-validation plot represents the loss and accuracy. 

 

 
 

Figure 9. T -distribution of the 10-fold test performance shows the 95% CI of the trained SHM model. 

 

The deep learning model was trained using the GW scalogram dataset, and its 

performance was evaluated using actual experimental data that was not included in the 

training process. The high accuracy achieved in the test results validates the potential of 

the proposed deep learning-based SHM model. The 10-fold av. test performance for 

healthy and debond classes are found to be 86.4% and 91.5%, respectively, whereas, 

the overall 88.95% average accuracy was obtained from the 10-fold test evaluation. 

Further, a T distribution plot in Figure 9 is obtained for the 10-fold test accuracy: [83.7, 

83.8, 84, 84.3, 83.7, 84, 84.2, 83.8, 84, 84.3]%, sample Size: 10, mean: 88.95, standard 

deviation: 0.374907395973402, degrees of freedom: 9, and Confidence Interval (CI): 

[88.68180740519773, 89.21819259480228]. 



CONCLUSIONS 

 

The research demonstrates the potential of this approach in accurately classifying 

breathing-debond regions in various bonded stiffened composite structures. By 

incorporating essential signal features through filtering and transformation, this 

monitoring strategy lays the groundwork for an automated system. The proposed 

methodology can be further explored for assessing a wide range of damages by 

leveraging acoustic fingerprints captured by the sensory network. The trained model 

can be deployed for real-time or online identification of damages in operational complex 

lightweight structures. In the specific study conditions, where SCP geometry and 

loading are considered, the registered GW signals exhibit a distinct HH1 signature 

indicative of breathing-debond. No other higher harmonics or sub-harmonics are 

observed. The test confusion charts of the trained deep learning network demonstrate 

the effectiveness of the SHM strategy in accurately classifying the two primary SCP 

classes: healthy and debond, using experimental untrained datasets with high precision.  
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