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ABSTRACT

This study aims to develop a structural health monitoring model that autonomously
assesses breathing-type debonds between the base plate and stiffener in lightweight
composite structures. The approach utilizes a specifically designed deep learning
architecture that employs nonlinear ultrasonic signals for automatic debond assessment.
To achieve this, a series of laboratory experiments were conducted on multiple
composite panels with and without base plate-stiffener debonds. A network of
piezoelectric transducers (actuators/sensors) was used to collect time-domain guided
wave signals from the composite structures. These signals, representing nonlinear
signatures such as higher harmonics, were separated from the raw signals and
transformed into time-frequency scalograms using continuous wavelet transforms. A
convolutional neural network-based deep learning architecture was designed to extract
discrete image features automatically, enabling the characterization of composite
structures under healthy and variable breathing-debond conditions. The proposed deep
learning-assisted health monitoring model exhibits promising potential for autonomous
inspection with high accuracy in complex structures that experience breathing-debonds.
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INTRODUCTION

Lightweight composites have become increasingly popular in various engineering
sectors, including aeronautics, aerospace, marine, infrastructure, and automobile, due to
their advantageous properties such as high stiffness-to-weight ratio, fire resistance, and
acoustic damping [1]. Bonded stiffened composites are commonly employed for

lightweight construction in these fields [2], where different types of stiffeners are
bonded to the base plate of the structures. However, the bond between the stiffener and
base plate can experience breathing-type debonding caused by cyclic loading, improper
handling, impact, and aging [3]. If left undetected, these debonds can expand over time
and result in catastrophic structural failures [4]. Therefore, the detection and
characterization of these hidden damages in stiffened composites are of utmost
importance.

Previous studies [5-6] have demonstrated the potential of structural health
monitoring (SHM) methods based on guided wave (GW) propagation for accurate
detection of concealed defects in complex composites with multiple layers. These SHM
techniques, utilizing linear and nonlinear GW propagation, offer long-range monitoring
with high sensitivity to minor defects or discontinuities in layers [7]. Typically,
lightweight and cost-effective broadband transducers, such as a network of surface-
mounted piezoelectric lead zirconium titanate transducers (PZTs), are used in these
SHM methods [5-6].

Breathing debonds in composites pose a challenge for traditional SHM methods [8].
The breathing-type debond can exhibit open (debond) or closed (undamaged) behavior
due to the occurrence of "breathing™ under dynamic wave loading. The breathing
phenomenon generates nonlinear ultrasonic waves with mixed frequency-response,
nonlinear resonance, sub-harmonics, and higher harmonics [9]. The nonlinear response
features are indicative of contact-type damage, such as breathing cracks or Kissing-
delaminations, and are less influenced by operational conditions [10]. The generation of
higher harmonics, associated with contact nonlinearity often observed in breathing-type
damage, has been analyzed by various researchers [11]. In [9], the occurrence of
contact-acoustic non-linearity (CAN) due to breathing-type cracks was investigated
using signals from a PZT network.

In recent years, machine learning approaches based on structural response data have
gained popularity for autonomous condition monitoring of structures [12-13]. Deep
learning algorithms, particularly Convolutional Neural Networks (CNN), have shown
their effectiveness in image-based characterization of structural conditions [14]. CNN
algorithms excel in handling grid-like inputs, such as images, and extract similar
features from local regions with similar patterns [14]. Image-based deep learning
involves large datasets that can be synthetically generated by adding different levels of
noise (e.g., Gaussian zero mean noise) to actual images, a technique known as "data
augmentation” [40-42]. Recent studies [12-14] have proposed deep learning-based
SHM methods for autonomous assessment of static damage or delamination in
laminated composites. However, there is a research gap in the identification of nonlinear
ultrasonic wave features induced by breathing-type damage using an automated deep
learning approach. This paper aims to address this gap by presenting a deep learning-
based SHM strategy.

In this paper, a CNN-based structural health monitoring (SHM) strategy is proposed
for automatically characterizing carbon fibre-reinforced stiffened composite panels



(SCPs) with and without baseplate-stiffener debonds. The strategy utilizes both the raw
guided wave (GW) signals and the filtered time-domain higher-harmonic signals. The
characterization is achieved through a series of laboratory experiments using multiple
SCP samples. The GW signals obtained from the experimental approaches are
transformed into RGB scalograms (representing time-frequency information) using the
Continuous Wavelet Transform (CWT). These scalograms are then employed as input
to the deep learning architecture specifically designed for this purpose, enabling
training, validation, and testing operations.

LABORATORY EXPERIMENTS

The experiments involved a series of ultrasonic guided wave (GW) tests conducted
on different healthy and baseplate-stiffener debonded samples of stiffened composite
panels (SCPs).

In each SCP sample, two L-shaped stiffeners measuring 30 x 30 mm and having a
length of 450 mm were attached to the baseplate, which had dimensions of 500 x 450 x
2 mm. Epoxy resin adhesive was used for bonding the stiffeners to the baseplate. To
create artificial debonds at the stiffener-baseplate interface, 0.05 mm thin Teflon films
measuring 30 x 30 mm were placed during the manufacturing process for samples (ii)
and (ii). A network of bonded lead zirconium titanate (PZT) transducers, with a
thickness of 0.05 mm and a diameter of 10 mm, was mounted on the top surface of the
SCPs. These PZTs were responsible for generating and receiving ultrasonic signals. A
signal generation and acquisition system with a sampling rate of 1M sample/s was used
to control the PZTs (Figure 1). The SCP samples were constructed using quasi-isotropic
laminates with lay-up (0/90/+45/-45)s made of carbon-fiber (CFCL) and had a thickness
of 2 mm.

Figure 1. Laboratory-based experimental setup for PZT-induced GW propagation in the SCPs.

Figure 1 illustrates the setup used in the laboratory for the SCP sample with the DSt2
debond, which includes a PZT network comprising 10 sensors (S1, ... S10) and an
actuator labeled as 'A'. The excitation signal was determined through a series of trials
involving various carrier frequencies and cycles. Among the tested signals, a 7-cycle
tone-burst sine signal exhibited the most pronounced higher harmonics in the frequency
domain. To identify a suitable actuation frequency, a series of 7-cycle sine waves with
different carrier frequencies were applied through the actuator 'A’, and the resulting
signals were collected at sensor 'S3' (Figure 1). This process enabled the generation of



a frequency-response plot, depicted in Figure 2(a), which indicated higher response
magnitudes around 150 kHz. Consequently, a Hanning window-modulated 7-cycle 150
kHz sine pulse, shown in Figure 2(b), was selected as the excitation signal for the
experiments. In Figure 2(b), the Fast Fourier Transform (FFT) of the actuator signal in
the frequency domain is presented. The actuator PZT introduces the excitation signal
(Figure 2(a)) and initiates the propagation of guided waves within the SCP. These
guided waves are detected by each of the PZT sensors (S1, S2, ..., S10) within the

network.
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Figure 2. (a) Selected actuator excitation signal and (b) its FFT.

DEEP LEARNING BASED SHM STRATEGY

The proposed structural health monitoring (SHM) strategy utilizes the time-history
signals of guided waves (GW) captured by the sensors. These signals are transformed
into time-frequency scalogram images using Continuous Wavelet Transform (CWT)
with the Morse Wavelet. CWT involves convolving the input dataset with a set of
functions generated by the mother wavelet, and this convolution can be efficiently
computed using an FFT algorithm. The output of CWT is a complex-valued function,
except for the complex mother wavelet, which ensures that the CWT is a real-valued
function along the positive real axis. Generalized Morse wavelets belong to the family
of analytic wavelets, and their Fourier transform is strictly positive along the real axis.
CWT s particularly useful for analyzing signals with time-varying frequency and
amplitude, as well as localized discontinuities. The resulting CWT produces RGB
scalograms, which provide time-frequency spectra.

The dominant frequencies and corresponding scales extracted from these RGB
scalograms are utilized to train and validate a signal classifier based on a Neural
Network. These scalograms serve as input to the deep learning network, enabling the
training and characterization of two distinct SCP classes: (i) UD and (ii) DSt.

Figure 3 illustrates the schematic representation of the SHM strategy, which
employs a CNN-based deep learning approach for the automatic assessment of
breathing debonds in SCPs. The training, validation, and testing processes of the
designed CNN architecture are explained in detail below.
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Figure 3. Deep learning based SHM strategy for healthy/debond SCP classification.
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Figure 4 displays a block diagram illustrating the architecture of the designed
CNN, which consists of six different layers. In this problem, each layer of the CNN
performs specific functions, and a concise overview is provided here. For a more
comprehensive understanding, refer to the detailed description in [15].
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Figure 4. Designed architecture of the CNN for structural classification.

In the CNN algorithm, the input scalograms are first converted into RGB pixels
and then fed into the network. In the present problem, each of the Red, Green, and Blue
channels (i.e., RGB) has a dimension of [292x219 pixels]. Separate convolution kernels
are assigned to each pixel matrix, and a bias is introduced after the convolution process.
The outputs obtained from these three channels are combined to generate the output for
this particular layer. To prevent any loss of information in subsequent layers, zero
padding is applied after the convolution. The values of the bias and convolution kernel
weights are updated using back-propagation.

RESULTS AND DISCUSSION

Experimental GW signals are collected for various cases. In Figure 5, representative
GW signals obtained from the undamaged and damaged cases are displayed. It is
observed that the GWSs propagating through the SCP at 150 kHz exhibit multiple GW
modes.
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Figure 5. Typical GW signals correspond to the healthy (UD) and debond (DSt) cases.



The frequency-response analysis of the undamaged and debond-affected signals is
presented in Figure 6, indicating the presence of higher harmonics resulting from the
breathing phenomenon in the debond region. Notably, the second harmonic (HH1) is
prominently observed in all debond cases.
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Figure 6. Healthy and breathing-debond informed raw GW signals in the frequency domain.

For the debond cases (DSt) and various actuator positions for the healthy cases (UD),
experimental ultrasonic signals in the time domain are recorded from 10 PZT sensors.
The GW dataset comprises two main classes, namely UD and DSt. In each case, the
GW signals are captured from the 10 PZT sensors. These original time-domain signals,
with a fixed window size of 800 microseconds, are then transformed into time-
frequency CWT scalograms, as illustrated in Figure 7. The dimensions of each RGB
scalogram image are determined to be [840x630x3] (lengthxwidthxchannels) pixels.

)}

Figure 7. Reduced CWT scalograms of the recorded GW signals corresponding to (a) UD and (b) Dst.

The scalogram sizes (in pixels) were reduced to [292x219x3] to reduce
computational costs. Additionally, 0-mean Gaussian noise ranging from 10% to 30%
was randomly selected and added to the resized CWT scalograms for image
augmentation, as illustrated in Figure 3. Gaussian noise follows a normal distribution,
and for image augmentation, a random Gaussian function is added to introduce this
noise. The zero mean value of the noise ensures that the positive and negative noise
cancel each other out in the system, resulting in no net disturbance. A total of 3000
scalograms were obtained, of which 80% (i.e., 2400 scalograms) were used for training,
10% (i.e., 300 scalograms) for validation, and the remaining 10% (i.e., 300 scalograms)
for testing the trained network. The deep learning network, described in Section 4, was
trained, validated, and tested using datasets consisting of resized scalogram images
corresponding to the UD and DSt classes. A 10-fold training/validation/test process was
conducted to ensure the stable performance of the deep learning network. The 3000



images belonging to the UD and DSt classes were divided into 10 parts, with 300 images
in each part. During training, Stage 1 used part-1 for testing and parts 2 to 10 for
training/validation. Similarly, in Stage 2, part-1 was used for testing, and parts 3 to 10
were used for training/validation. This process was repeated for Stages 3 to 10 to
improve confidence in the training progress. The validation accuracy and loss curves
exhibited some oscillations during the early epochs due to the limited number of images
per batch. After each batch passed through CNN, updated weight values were applied
proportionally to all classes to prevent overfitting. To train the network, 10 epochs with
31 iterations per epoch were considered. Figure 8 illustrates a typical training and
validation result, showing the validation accuracy and loss. The 10-fold training and
validation results yielded an average accuracy of 97.4%.
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Figure 8. Training-validation plot represents the loss and accuracy.
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Figure 9. T -distribution of the 10-fold test performance shows the 95% CI of the trained SHM model.

The deep learning model was trained using the GW scalogram dataset, and its
performance was evaluated using actual experimental data that was not included in the
training process. The high accuracy achieved in the test results validates the potential of
the proposed deep learning-based SHM model. The 10-fold av. test performance for
healthy and debond classes are found to be 86.4% and 91.5%, respectively, whereas,
the overall 88.95% average accuracy was obtained from the 10-fold test evaluation.
Further, a T distribution plot in Figure 9 is obtained for the 10-fold test accuracy: [83.7,
83.8, 84, 84.3, 83.7, 84, 84.2, 83.8, 84, 84.3]%, sample Size: 10, mean: 88.95, standard
deviation: 0.374907395973402, degrees of freedom: 9, and Confidence Interval (Cl):
[88.68180740519773, 89.21819259480228].



CONCLUSIONS

The research demonstrates the potential of this approach in accurately classifying
breathing-debond regions in various bonded stiffened composite structures. By
incorporating essential signal features through filtering and transformation, this
monitoring strategy lays the groundwork for an automated system. The proposed
methodology can be further explored for assessing a wide range of damages by
leveraging acoustic fingerprints captured by the sensory network. The trained model
can be deployed for real-time or online identification of damages in operational complex
lightweight structures. In the specific study conditions, where SCP geometry and
loading are considered, the registered GW signals exhibit a distinct HH1 signature
indicative of breathing-debond. No other higher harmonics or sub-harmonics are
observed. The test confusion charts of the trained deep learning network demonstrate
the effectiveness of the SHM strategy in accurately classifying the two primary SCP
classes: healthy and debond, using experimental untrained datasets with high precision.
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