Least-Square Support Vector Regression for
the Prognosis of the Deteriorating Structure
Under the Seismic Excitations Using
Autoregressive Model

SHIVAM OJHA, AMIT SHELKE and ANOWARUL HABIB

ABSTRACT

In the current work, the prognostic behavior of the degradation in the space frame
is carried out through the proposed data-driven framework based on autoregressive
modelling and least square support vector regression. The acceleration responses were
obtained at certain intervals after introducing the time dependent damage in the
building. These responses are used to develop the damage index through filtering and
statistical measures. The series of damage index is nonstationary in nature and therefore,
the time varying autoregression (TVAR) modelling is carried out to obtain the change
point. Next, for the prognosis, the algorithm performs surrogate modeling of observed
degradation through least square support vector regression (LS-SVR) and the same is
used to predict the trend of degradation. To increase accuracy and obtain the confidence
bounds, a few mini datasets are created through omitting and shuftling the observation
in the training dataset. The LSSVR predicts the degradation trend through each mini
dataset. The mean and covariance of the prediction provides the best fit value along with
upper and lower bounds. The advantage of SVR is that it can provide high-order
approximations with sparse availability of samples. However, SVR optimized through
sequential minimal optimization is time consuming and iterative in nature. Therefore,
in the present study least square SVR is used for the model fitting and regression.
Overall, the results highlight the potential advantage of creating mini datasets for taking
advantages of LSSVR for the prognosis and obtaining the confidence bounds.

INTRODUCTION

Prognosis and health management (PHM) is the evolving tool for the reliable
operations of machines and the proper functioning of the structural components in civil
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engineering systems. Further, it ensures timely fault detection and diagnosis,
improved system reliability, effective maintenance, and prediction of remaining useful
life. [1-6]. In the current work, prognosis is carried out through support vector regression
(SVR) due to its versatile nature and ability to perform in sparse sample availability.

The support vector machine (SVM) is less prone to overfitting and has the advantage
of providing high-order approximations with sparse availability of samples [7]. Louen,
Ding and Kandler [8] use the SVM classifier to develop the health indicator and then
predict the RUL using the Weibull function. Huang, Wang, Li, Zhang and Liu [9]
reviewed the various algorithm based on SVM for the prognosis of the different
systems. Yan, Wang, Wang, Chang and Muhammad [10] identify the degradation state
of the bearings using the SVM classifier. Instead of using SVM as a classifier, several
researchers use it as a regressor to predict the RUL [5]. Khelif, Chebel-Morello,
Malinowski, Laajili, Fnaiech and Zerhouni [11] directly map the health indicator values
using support vector regression (SVR). Xue, Zhang, Cheng and Ma [12] predict the
RUL of lithium-ion batteries using Kalman filter and optimized SVR. Generally, SVM
and SVR are optimized through sequential minimum optimization, which is iterative
and time-consuming. Thus, least-square support vector regression (LS-SVR) is
introduced as an alternative by Suykens and Vandewalle [13]. Quand Zuo [14] optimize
the hyperparameters of the LS-SVR through a genetic algorithm and provides an
algorithm for the prognosis of the machine condition.

For the study, the building frame is selected and degraded under suitable time
dependent deterioration law. It is excited under different seismic excitations to obtain
the output acceleration responses, which were used to build a damage index. This
damage index changes its trend due to certain seismic events, and time instant is known
as the change point. The change point is identified through time-varying auto regression
(TVAR) modelling. The prognosis of the damage index is carried out through least
square support vector regression (LSSVR), which is applied to the mini datasets for
obtaining the mean prediction curve and confidence intervals. The organization of the
paper is as follows: The introduction discusses the literature review and explains the
proposed work briefly, next section discusses the TVAR and LSSVR. Further, the
algorithm is presented, followed by results and discussion. Finally, the conclusion is
presented.

AUTOREGRESSION MODELLING

Autoregressive (AR) modelling is carried out for the stationary time series. However,
the damage index pattern obtained in the present study is a non-stationary time series.
Thus, time adaptive AR coefficients are needed to reconstruct the original pattern.
Therefore, the time varying retrogression modelling is carried out for obtaining real time
coefficients. The sudden change in the coefficient value will imply the change in the
statistical pattern of the damage index. This sudden change signifies the occurrence of
the change points. The details of the TVAR can be found in following literature [15].

LEAST SQUARE SUPPORT VECTOR REGRESSION

The support vector machine (SVM) is proposed by Vapnik [16] and the technique has
two categories i.e., (i) classifier and (ii) regressor. SVM is the supervised learning



algorithm trained by optimization theory that derives the weights and biases from
statistical concepts and kernel functions. The advantage of the SVM is that the
complexity and quality of the solution are independent of the dimension of the input
dataset. Thus, it can provide the solution with the sparse availability of observations.
The advantage of the SVM is that the complexity and quality of the solution are
independent of the dimension of the input dataset. Thus, it can provide the solution with
the sparse availability of observations. It maps the observations into high-dimensional
feature space so that an optimal separating hyperplane can be constructed in that space.
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Figure 1. Illustration of the fundamental concept of support vector machines

Consider the training data set X € R, is givenby X ={(x,,,),(X,, ,)eceeers (X, . )}
, where, xis input pattern and y denotes the output pattern. Then, the optimal
hyperplane  separating the two  different classes is given by
s(x)=w'x+b, here, w e X, represents the coefficient vector of the hyperplane, and

b € R is the bias. The concept of the support vector machine is represented in Figure
1. Tt can be shown that there should not be any point lies between the supporting
hyperplane and the distance between them should be maximum, leading to the convex
optimization problem as follows:
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The final solution of the above equation is given by:
s(x)=Y ayx x'+b (2)

ieSV

where, SV represents the support vectors. The equation is modified for the nonlinear
decision boundary using kernel function in which the samples are classified in the higher
dimensions. The equation will be modified as

b =y'- Z aiyiK(xl.,x')
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s(x) = z ay,K(x,x")+b
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Where K (x[ ,X ') represents the kernel function. The kernel function can be polynomial
function K (x,y) =((x.y)+1)’,d =1,2,...,n or the two-layer neural SVM function

K(x,y) = tanh(¢(xy) + 0).

LS-SVM is another of SVM regression. Suykens and Vandewalle [13] replaces
the inequality constraints through equality constraint by introducing errors. Thus, the
least squares version of the SVM classifier is obtained by formulating the conventional
problem as

minimize %”w” +y % Zn:ef ,

=1 4)
s.t. yi[wal.+b]:l—ei, i=1,...,n
The corresponding Lagrange function in primal form is written as
_ 1 1< N r
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where «; are Lagrange multipliers. Minimizing the Lagrangian and the obtained
condition can be written in the matrix form as follows:
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where Z:[xlTyl;szyz,..;anyn],Y:[yl;...;yN],T=[1;...;1],

e=[ese,..;e,], and a =[a;;, ...;a, | The solution can also rewrite as
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Using the Mercer's condition to the matrix ZZ" = Q, =y, ijl.Tx =yy,K (xi , X ), the

above equation can be solved easily to obtain the solution of & ,and b .

ALGORITHM

The proposed framework takes the acceleration responses in the data acquisition
step. The acceleration responses are processed to develop the damage index using
singular spectral analysis and statistical distances. Since the LS-SVR and grid search
optimization works on the training dataset, it gives improper results if the dataset uses
observations from the beginning even after the change point occurs. Therefore, the
dataset needs to be revised when the change point occurs. The detection of change points
is carried out using the TVAR coefficients. The sudden change at any time instant in
the TVAR coefficients will be considered as change point. If a change point occurs, the
training dataset is re-evaluated. Once the training dataset is finalized, the mini datasets
are created through random shuffling and omitting the observations. For each mini



dataset, the prognosis is carried out using LSSVR. The hyperparameters are optimized
through grid search optimization. Thus, several prognosis curves are obtained through
each mini-dataset. These curves are used to calculate the mean prediction curve and the
confidence interval bounds. The steps of the algorithm are presented in Figure 2
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Figure 2 Illustration of the working mechanism for prognosis
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RESULT AND DISCUSSION

The damage index in the current study is developed using the combination of singular
spectral analysis along with recursive autoregressive modelling. Finally, the statistical
measures called Bhattacharyya distance between auto regressive coefficient clusters is
used as damage index. The details can be found in the following literature [17]. The
building frame is selected and degraded under suitable time dependent deterioration
law. It is excited under different seismic excitations to obtain the output acceleration
responses which were used to build a damage index. Figure 3 (a) represents the change
in the damage index. Further, for evaluating the training dataset, the perturbations are
added to the damage index and it has been reconstructed through TVAR. The sudden
change in the time varying AR coefficient will identify the occurrence of change point.
Figure 3 (b) represents the change point detection using time varying AR coefficients.
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For the application of LSSVR, it is important to decide the training dataset. Until the
change point occurs, the observations from the beginning till the time of prediction are
considered in the training dataset. After the change point occurs, the observation from
the change point till the time of prediction is considered in the training dataset. For each
of the training datasets, several mini datasets are created through shuftling and omitting
the observations. The prediction curve is calculated for each mini dataset and then the
mean and confidence bounds are obtained. The advantage of creating the mini dataset
is that variation in training data is considered resulting in better prediction and obtaining
the confidence interval for such a deterministic approach. Figure 4 (a), (c), and (d) are
the prognosis results obtained through LSSVR directly using the training dataset. Figure
4 (b), (d) and (f) are the results obtained considering the mini datasets. Figure 4 (e) and
(f) provide the prediction results without re-evaluating the training dataset, still the
proposed algorithm works better.
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Figure 4. Prognosis of the degradation index without considering change point, (a),
(¢), (e) regular approach, and (b), (d), (f) proposed approach using mini datasets.

Further, the comparison between the prediction results of the proposed framework
with the conventional approach is carried out using mean square error (MSE) and
coefficient of determination (COD).
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Figure 5 Prognosis of damage index at 65 years considering change point (a)
regular approach, (b) proposed approach, (c) MSE, and (d) COD.

Figure 5 (a), and (b) shows that the proposed framework predicts the degradation
trend more accurately with mean square error less than 0.1. The notation ‘1’ and ‘2’ in
figure below represents the conventional and proposed approach simultaneously.
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Figure 6 Prognosis of damage index at 85 years considering change point (a)
regular approach, (b) proposed approach, (c) MSE, and (d) COD.

Further, a similar inference can be made for Figure 6. It can be clearly observed that
as the size of dataset grows, the predicted mean of proposed approach tends to
coincide with the conventional prediction. However, the confidence interval holds an

added advantage.

CONCLUSION

The current work introduces TVAR for change point detection and concept of the
mini datasets to make results slight probabilistic. This proposed approach provides
confidence interval in the prediction results, using LS-SVR, which is deterministic in



nature. The LS SVR is optimized through grid search optimization. The efficacy of
the proposed algorithm is examined through the regular prediction approach. The
results of the prognosis confirm the accuracy and effectiveness of the proposed mini
datasets concept in the LS-SVR framework for predicting degradation.
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