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ABSTRACT 

Unsupervised damage detection in uncontrolled, outdoor environmental and opera- 
tional conditions (EOCs) is crucial for practical structural health monitoring. While pre- 
vious research has explored autoencoder-based unsupervised damage detection methods, 
they require training data only from pristine conditions. In long-term monitoring, irregu- 
lar environmental and operational conditions, as well as variations in damage, may make 
it difficult to satisfy this requirement. In this paper, we propose a novel autoencoder- 
based approach that uses training data containing regular and irregular environmental 
and operational conditions, as well as damage variations. We also investigate the impact 
of various factors, such as training epoch, damage duration, and measurement interval 
on the accuracy of damage detection. Our results indicate that our proposed framework 
achieves an AUC score of over 0.95 when the measurement interval is around 860 sec- 
onds per measurement. Interestingly, this score decreases both when we sampling faster 
and slower. 

 

INTRODUCTION 

Mechanical systems and civil infrastructures are subject to continual deterioration 
over time as a result of their exposure to operational and environmental conditions, such 
as applied static/dynamic loads, temperature variations, and strong winds. This degra- 
dation can manifest in various forms, such as corrosion, fatigue cracks, erosion, and 
strength reduction. As the number and complexity of large and costly engineering struc- 
tures (e.g., bridges, wind turbines, and aircraft) continue to increase, there is a growing 
demand to improve their safety and reliability and reduce design, operating, and main- 
tenance costs. To address this demand, structural health monitoring (SHM) has been 
extensively developed [1, 2]. 

In structural health monitoring, damage diagnosis techniques based on ultrasonic 
guided waves (UGW) have garnered significant interest owing to their numerous promis- 
ing capabilities, such as their ability to cover large inspection areas, high sensitivity to 
detecting small-sized damage, and the ability to continuously monitor in-service struc- 
tures on-site [1, 3]. However, it’s important to note that changes in guided waves may 
not only be attributed to structural changes in the monitored system but may also re- 
sult from various environmental and operational conditions (EOCs), such as moisture, 
vibration, and especially temperature [2, 4]. Recent research has demonstrated the suc- 
cess of supervised machine learning and deep learning algorithms in ultrasonic guided 
wave-based structural health monitoring in various conditions [5–12]. However, these 
algorithms require well-established, labeled, and balanced datasets, typically obtained 
in controlled lab environments using simple structures. Generating all possible damage 
scenarios in varying environmental and operating conditions is often cumbersome, time- 
consuming, and costly [13]. Therefore, Unsupervised learning algorithms, such as deep 
convolutional autoencoders, are better equipped to handle such situations [14]. 

The autoencoder-based structural health monitoring system with guided waves has 
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been implemented in some research. Rautela et al. transformed guided waves into a
time-frequency domain using continuous wavelet transformation and then delamination
in aerospace composite panels was identified using a convolutional autoencoder algo-
rithm that has been trained on healthy signals [13, 14]. Abbassi et al. compared four
unsupervised dimensionality reduction-based damage detection methods with Q and
T 2 statistics for computing the compressed representation of the monitoring data (DI
plot), including principal component analysis, kernel principal component analysis, t-
distributed stochastic neighbor embedding, and autoencoder. Results indicated the au-
toencoder trained by guided waves from various health conditions showed the best per-
formance in detecting and locating the position of the damage with varying temperature
conditions [2]. Similar usage is implemented in detecting rail flaws and plate structures
based on the reconstruction error with an autoencoder trained by guided waves obtained
from pristine structures [15]. Yu et al. enhanced damage localization with denoised
guided waves generated by denoising autoencoder trained by healthy guided waves from
complex composite structures [16]. Lee et al. also further presented an automatic tech-
nique for detecting and classifying fatigue damage in composite structures using a deep
autoencoder. The autoencoder model is trained using guided waves collected from pris-
tine specimens, and its architecture and hyperparameters are optimized to improve the
accuracy and sensitivity of the damage diagnosis. The damage-sensitive features are
automatically extracted from the bottleneck layer of the DAE model and then analyzed
using a density-based spatial clustering of applications for damage classification. [3].

Although these autoencoder models achieve remarkable performance in damage de-
tection, few of them are validated in uncontrolled, outdoor environments in the existence
of highly variable conditions, such as rain and snow [17, 18]. In addition, all these au-
toencoder models are required to be trained by data collected from pristine specimens.
In this way, this work will propose a novel autoencoder-based damage detection without
requiring clean training only from pristine structures. Furthermore, our previous exper-
iment, as highlighted in [19], revealed that decreasing the measurement interval leads
to a decrease in correlation among nearby collected guided waves. Consequently, this
can lead to increased variations within the collected data, thereby hindering damage de-
tection due to the impaired reconstruction of guided waves. Surprisingly, experiments
mentioned in the paper also demonstrate that increasing the measurement interval can
have a negative impact on damage detection. However, there is a lack of knowledge on
the impact of measurement interval on damage detection. Therefore, our study aims to
investigate the influence of frequency on damage detection and provide valuable guide-
lines for selecting an appropriate frequency for measuring guided waves in practical
structural health monitoring scenarios.

DAMAGE DETECTION FRAMEWORK

The framework comprises two components: a short-term PCA-based guided wave
reconstruction and an autoencoder-based guided wave reconstruction. The framework
can differentiate between regular and irregular environmental and operational variations
(EOCs) as well as damage variations by comparing the guided wave reconstruction re-
sults from the two components. The reconstruction coefficient, which measures the cor-
relation between a guided wave and its corresponding reconstructed guided wave, is



Figure 1. The damage detection index is the difference between the short-term PCA
and autoencoder reconstruction coefficients, as shown in the second subplot. The short-
term PCA and autoencoder (after the 3-rd epoch training) reconstruction coefficients,
marked with orange and blue color, respectively, are shown in the first subplot. The
corresponding temperature and humidity are shown in the third and fourth subplots. The
damage region is shadowed with a gray region and the recorded precipitation period
from the weather website is marked with black color. The measurement interval is 86
seconds per measurement.

used to evaluate the reconstruction performance. The short-term PCA reconstruction co-
efficients can distinguish irregular EOC variations, such as rain and snow, from regular
EOC variations, such as temperature and humidity, and damage variations, such as crack
and delamination in composite structures [17, 18]. Meanwhile, the autoencoder-based
reconstruction coefficients can detect damage variations from regular EOC variations.

Irregular Variation Detection

To implement short-term PCA reconstruction in guided wave structural health moni-
toring, the continuously monitored guided waves are divided into non-overlapping batches.
For example, the 80-day guided waves are divided into 80 batches, each containing 1-day
guided waves. PCA is then applied to decompose and reconstruct each batch of guided
waves using the first 15 principal components. This is called short-term PCA because
the time window is relatively small compared to long-term monitoring. This parameter
setting has been previously used in our work [17,18] and has proven to efficiently detect
irregular EOC variations, as illustrated in Fig. 1 where short-term PCA reconstruction
coefficients remain close to 1 during regular and damage variations but decrease during
irregular variations such as rain, snow, and direct sunlight conditions.



Damage Detection

Guided waves that can not be reconstructed by the autoencoder and not from irreg-
ular EOC variations (as identified by short-term PCA reconstruction) will be inferred
to be from damage variations. Thus, the damage detection is based on the difference
between short-term PCA and autoencoder-based reconstruction coefficients, as shown
in Fig. 1. When those reconstruction coefficient differences are far from 0, the corre-
sponding measurements will be regarded as damage variations. To avoid false alarms
from irregular EOC variations, we set reconstruction differences to 0 for guided waves
detected from irregular variations. To further reduce false alarms from regular and irreg-
ular variations, we apply a 3-hour long-running median filter to process reconstruction
differences before detecting damage to mitigate some unexpected bad reconstructions
caused by dynamic regular and irregular EOC variations.

Damage Detection Evaluation

The detection model’s ability to distinguish between positive and negative samples
across a range of thresholds, rather than a specific threshold, is indicative of good perfor-
mance. As such, the evaluation of damage detection performance is based on the receiver
operating characteristics (ROC) curve and the area under the ROC curve (AUC), which
are calculated by sweeping across possible thresholds to obtain true positive rate (TPR)
and false positive rate (FPR) [17, 18].

EXPERIMENTAL SETUP

Experiments were conducted at the University of Utah in Salt Lake City. The moni-
toring system was placed in a small room with three walls and a gate, exposed to various
weather conditions, such as rain and snow, due to the lack of a roof. We use synthetic
damage as described in our prior work [18] to evaluate the performance of our damage
detection framework. We created a total of 20 regions of 80-day guided waves, each
containing synthetic damage ranging from 1 to 20 days. It’s worth noting that the train-
ing data is also used as test data in our study. We utilized the autoencoder’s learning
ability difference in guided waves from regular, irregular, and damage variations.

RESULTS AND DISCUSSION

In this section, we explore the effect of changing the measurement interval (the time
between each measurement) on the autoencoder’s performance. We also demonstrate
this our choice of measurement interval is related to the number of epochs for which
the autoencoder is trained. In the first subplot of Figure 2, the measurement interval
is set to 17.2 seconds per measurement. It can be observed that during the presence
of synthetic damage (indicated by the gray region), the reconstruction differences are
larger compared to the healthy conditions when training for only one epoch training.
These differences tend to decrease with continued training with more epochs, likely due
to overfitting. When the measurement interval is decreased to 86 and 860 seconds per



Figure 2. The four subplots display the normalized reconstruction difference between
the short-term PCA and autoencoder-based reconstruction coefficients at different mea-
surement frequencies, ranging from 17.2 seconds per measurement to 4300 seconds per
measurement, as indicated in the title of each subplot. For each subplot, the reconstruc-
tion difference using the 1st, 5th, and 10th epoch autoencoder reconstruction coefficients
is shown. The damage region, which lasts for 3 days, is shaded in gray.

Figure 3. The three subplots depict the AUC score obtained by calculating the reconstruc-
tion difference between the short-term PCA and autoencoder reconstruction coefficients.
Each subplot corresponds to a different measurement interval, ranging from 86 to 8600
seconds per measurement. For each subplot, the AUC scores were calculated for damage
durations ranging from 1 to 20 days, using the reconstruction coefficients obtained after
training the autoencoder for 1 to 60 epochs.

measurement, the reconstruction difference between the healthy and damaged regions
still persists even after 10 training epochs. This suggests that decreasing the measure-
ment interval results in the autoencoder being trained with fewer guided waves reflecting
damage variations, leading to larger reconstruction differences. Moreover, reducing the
frequency also helps reduce false alarms caused by transient EOC variations, such as
direct sunlight, as shown in Fig. 1. However, at even lower measurement frequencies,
such as 4300 s, it becomes challenging to reconstruct even regular guided waves, thus
diminishing our ability to effectively detect damage.



Further evidence can be observed in Figure 3, where an increase in the training epoch
(x-axis) or the duration of damage in the training data (y-axis) leads to a decrease in the
AUC score when the measurement interval is set to 86 seconds per measurement. This
suggests that prolonging the autoencoder training duration or introducing more instances
of damage variations for the autoencoder to learn worsens the damage detection perfor-
mance due to a reduction in reconstruction differences within the damaged region. Con-
sequently, the autoencoder learns fewer guided waves that contain damage variations,
while still acquiring sufficient regular guided waves to enhance damage detection.

On the contrary, an improvement in performance is observed when increasing the
measurement interval from 86 to 860 seconds per measurement. For instance, the best
AUC score across training epochs increases from 0.94 to 0.98 when the damage duration
spans 10 days. Additionally, higher AUC scores are achieved for larger training epochs
and longer damage durations. However, when further reducing the measurement interval
to 8600 seconds per measurement, the damage detection framework fails to achieve high
AUC scores under any conditions. This can be attributed to the inadequate learning
(reconstruction) of regular guided waves, resulting from the scarcity of regular guided
waves available for the autoencoder to learn.

CONCLUDING

Our proposed damage detection framework demonstrates its effectiveness in detect-
ing damage in uncontrolled, outdoor environments, without relying solely on training
data from pristine conditions. Our findings indicate that excessively long damage dura-
tions and large training epochs can have a detrimental effect on performance. However,
by appropriately reducing the measurement interval, we can improve both the accuracy
of damage detection and the robustness concerning variations in training time and dam-
age duration, as it reduces the number of learning instances from damage variations.
Further reducing the measurement interval worsens the damage detection performance
due to the limited availability of regular guided waves for training the autoencoder.
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