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ABSTRACT

This paper explores a novel approach to establishing detection sensitivity for SHM.
The proposed approach uses data associated with the largest flaw such that all smaller
flaws were not detected and the smallest flaw such that all larger flaws were detected
for that specimen. These points are termed “limit defining” because they directly
contribute to defining the most valuable portion of the probability of detection (POD)
curve. A POD curve can be efficiently built using a standard hit/miss analysis, and an
upper confidence bound can be generated by calculating the Covariance of the Limit
Defining Pair (CLDP) to take the dependence into account. A fatigue experiment was
conducted on 60 aluminum bars using a carbon nanotube (CNT) based fatigue crack
gauge. 100 data points were collected for each specimen as the crack grew to ~2mm.
1000 classic POD curves were generated by randomly selecting 1 point from each
specimen to observe variability, and subsequently the same data was analyzed using the
CLDP. Finally, random subsets of specimens were selected to simulate POD statistics
associated with testing fewer specimens. Overall, CPLD has proven to be a robust and
reliable alternative to traditional detection sensitivity evaluation for SHM sensors.

INTRODUCTION

MIL-HDBK-1823A has been used for the past two decades to assess, compare and
specify detection sensitivity for non-destructive inspection (NDI) equipment. The key
metric is agoos—the flaw that can be detected 90% of the time with 95% confidence—
however the entire probability of detection (POD) versus flaw size curve is typically
used when calculating overall acceptable system risk. MH1823 provides guidance and
example procedures for producing this POD curve, with references to statistical
software that can facilitate the calculations. A key distinction for the methods described
in MH1823 is that complete measurement independence is explicitly presumed, i.e. it is
not permissible to grow a flaw on the same test article that is measured more than once,
or take multiple measurements of the same flaw while changing other variables. As
currently described in the handbook, only one measurement can be taken per test
specimen, as additional measurements would then have some degree of dependence.



Consistent with NDI techniques, POD must be considered when determining the
detection capability and monitoring intervals for Structural Health Monitoring (SHM)
methods using processes aligned with the statistical methods described in MH1823A.
Current detection sensitivity assessment approaches laid out in MHI1823A are
challenging to implement for SHM however. The complication arises from the
presumption of measurement independence. These methods were developed for legacy
NDI equipment where inspectors brought reusable hardware and sensor probes to a set
of pre-damaged specimens and collected the necessary data. However, by definition
SHM sensors need to be permanently attached to the specimens (regardless of whether
or not they are installed pre-damage to collect a baseline measurement or post-damage),
so while it is possible to formulate SHM-POD in such a fashion with 60-100 specimens
as suggested in the handbook, it is impractical to the extent that it would become
prohibitively expensive. The present effort seeks to remedy this, by establishing a
statistically equivalent probability of detection (SEPOD) approach for SHM-POD.

APPROACH

The data generated for SHM-POD analysis was collected using WISP Fatigue
Crack Gauges (FCG). The WISP FCG is fabricated by sealing polymer nanocomposite
(PNC) deposited onto patterned metallic electrodes between two thin flexible substrates.
The entire FCG assembly is ~200 pum thick and weighs ~10 mg/cm? Rather than
measuring the finite effects of braking traces in traditional crack gauges, there are
literally trillions of carbon nanotubes (CNT) forming the electrical path, each
contributing to either a parallel or series resistance. As a crack grows anywhere under
the PNC, the measured resistance will change as a function of the crack length and
orientation with respect to the electrodes. Technically, the name for this approach is
Direct Current Potential Difference (DCPD). Resistance of the PNC network can be
analytically solved as a function of crack length (Eq 1), and for small cracks (a << gauge
length w) the equation can be simplified such that the crack length is approximately
proportional to the square root of the normalized resistance change times a geometric
constant related to the gauge form factor (Eq 2).
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Figure 1. Photographs of the WISP Fatigue Crack Gauge (FCG).



EXPERIMENTAL SETUP

To generate flaws for developing an SHM-POD approach, 12” long by 17 wide
6061-T6 Aluminum bars were waterjet cut from cold rolled 1/8” sheet stock. Following
ASTM E647 “Standard Test Method for Measurement of Fatigue Crack Growth Rates”
a ~0.2” notch was EDM cut in the center of one edge of the bar to provide a reliable
crack initiation point. WISP FCG sensors were bonded centered on the EDM notch. To
grow natural cracks, specimens were fixtured in 4-point bending, and a fixed
displacement was applied using a programmable stepper motor. First 75 cycles would
be applied between 100pue and 1000ue followed by 5 cycles between 100ue and
1500ue. This pattern was repeated 9 times, and on the 10th repetition the first set of
cycles was increased from 75 to 200 cycles. The effect of this loading routine was the
creation of marker-band striations on the cracked surface that could be used for truth
data after testing. WISP data was collected after each high-strain block. A total of 60
independent specimens were instrumented and tested. Before specimens were cut for
marker-band analysis, the distance between the bonded gauge and the EDM notch was
recorded using a micrometer. Overall, the average distance was 0.25mm, however there
were specimens that were as far as 0.7mm away. Since the WISP FCG has no way of
detecting a crack outside of the bond area, the data analysis was conducted using an
“offset crack length”, i.e., just the length of the crack beneath the gauge.
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Figure 2. Photogr_aphs of 4-point fatigue bending fixture (léft) marker-band surface (right).
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Figure 3. Example of raw WISP FCG data (left) and data converted to crack length (right).



STATISTICAL ANALYSES
Traditional Hit/Miss Analysis

For the hit/miss analysis, a threshold value of 125 was used to indicate a crack being
detected (signal > 125 denotes crack detection) or no crack detected (signal < 125
denotes no crack detected). A “hit” was recorded if a physical crack was present and the
SHM system recorded a signal above the threshold value, and a “miss” was recorded if
a physical crack was present and the SHM system recorded a signal below the threshold
value. A logistic regression model was fit to this data using an indicator for the “hit”
and the “miss” as the response variable and the crack length as the independent
predictor. From this curve the crack length that resulted in a 0.90 probability of “hit”
detection was estimated (aso). This fitted curve is called the POD curve. Confidence
bounds for the POD curve were then computed to determine the 95% upper confidence
bound for the detectable crack length with 0.90 probability (asos). It is important to note
in a traditional hit/miss analysis, observations are assumed to be independent. In data
samples where multiple observations are observed on the same specimen, independence
cannot be maintained if more than one observation from each specimen is included into
the data used to generate the POD curve. Therefore, in order to conduct a traditional
hit/miss analysis, code was written to randomly select a single observation from each
specimen to create an independent dataset from which to build the POD curve. Next, a
sensitivity analysis was conducted to investigate how much these POD statistics would
vary depending on the “luck of the draw”. The same random selection code was
executed 1000 times in conjunction with the hit/miss analysis. Finally, it was
investigated how much these POD statistics would vary depending on the number of
specimens tested. The previous procedure was followed again, but this time for each of
the 1000 iterations, the single datapoint was chosen from a subset of the 60 specimens
selected at random. The subsets were generated repeatedly from 59 specimens down to
a subset of only 10 specimens.

For each set of 1000 iterations the mean, standard deviation, minimum, and
maximum value for the aso and aso9s were reported as a function of specimen subset
size. Two additional “diagnostic” values were also reported:

- % Convergent reports on the percentage of the 1000 iterations that resulted in
convergent agons values. There are isolated cases where agos cannot be
determined because the upper confidence bound for the aso curve never
intersects with a 90% probability or the bound itself is not able to be
estimated, particularly when there the specimen subset size gets small.

- % BLED (Below Largest Experimental Datapoint) reports on the percentage
of the 1000 iterations that resulted in aso9s values that were below the largest
Offset Crack Length measured within the subset of specimens selected for
that iteration. Beyond the non-convergent cases, some isolated cases
converged but resulted in irrational agos values that in some cases were even
larger than the specimen width. It was determined that a reasonable cut-off
value for a rational as9s value was no larger than an experimentally observed
crack length, as otherwise the value was purely a mathematical extrapolation.

All non-convergent cases and those with values above the largest experimental
datapoint were removed before calculating the aso9s mean and standard deviation.



Covariance of Limit Defining Pairs (CLDP)

For SHM however, the sensors are single-use, permanently installed elements that
effectively become disposable once attached to the specimen, so a large test matrix can
become prohibitively expensive. Thus, the motivation was for an alternative approach
to SHM-POD to reduce the required quantity of test specimens, while taking advantage
of the fact that once instrumented, continuous SHM data is essentially “free”.
Covariance of Limit Defining Pairs (CLDP) is a novel variation of the traditional
hit/miss analysis, making use of accepted statistical practices already acknowledged in
MH1823. The main principle of CLDP is making more efficient use of each specimen
so that every datapoint is equally “valuable”, through sparing use of repeated measures
while accounting for its dependence. The CLDP analysis is conducted as follows:

a. Conduct a POD test matrix collecting as much data as practically possible
during each test, assuring that at least 5 points are collected before and after
the damage threshold has been crossed, whether through direct real-time
observation, past experience or excessive data volume.

b. For each specimen, identify the “limit defining pair”.

i. Largest “miss” such that all prior data points are also misses.
ii. Smallest “hit” such that all subsequent data points are also hits.

c. Perform a hit/miss analysis on the “limit defining pairs”, using covariance to

account for the dependence between these repeated measures.

Note that the “limit defining pairs” could be adjacent to each other if the damage metric
always trends upward, or could be separated by points that oscillate around the threshold
due to noise. Two version of CLDP have been implemented, 1B1A and 2B2A, in
reference to how many points (1 or 2) are used before and after the detection threshold.
For the CLDP analysis presented here, the same procedure as the traditional hit/miss
analysis was followed, where POD statistics were calculated for reduced specimen
subset, with 1000 random combinations chosen for each subset size. The main
difference in this case is that for each combination, the limit defining pairs remained
constant as opposed to selecting a random datapoint from each specimen in the subset.
Additionally, the same diagnostic % Convergent and % BLED values were presented.
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Figure 4. Illustrations of cases of Limit Defining Pairs selected for IB1A and 2B2A analyses.



Comparison of Results

Looking at the traditional hit/miss analysis, it is interesting to note that the as
standard deviation is relatively high compared to the mean value (Figure 6). One could
reasonably expect a ~20% variability in the ago value just based on random draws of the
data point used from each specimen. Under 40 specimens, the mean and standard
deviation for agows starts to grow exponentially, and ultimately there are many non-
convergent cases. Overall, it can be seen that even with 60 specimens, a simple hit/miss
analysis may not yield repeatable results for this SHM-POD, and that it is quite unlikely
that less than 40 specimens could be used to generate a meaningful POD curve. Looking
at the CLDP hit/miss results, great improvements can be seen immediately. The aso
mean value is very consistent throughout the entire specimen subset range simulated.
Similarly, the asws values are stable for the CLDP cases, the standard deviations are
reasonable for the random draws of specimen subsets and there are many fewer non-
convergent cases. Using 2 limit defining pairs (2B2A) yields meaningful results under
20 specimen subsets. Perhaps most importantly, the CLDP POD statistics are consistent
with the mean traditional hit/miss analysis values for higher specimen quantities.
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Recommendations for SHM Detection Sensitivity Approach

The main goal of this investigation was to develop a POD analysis approach that
could allow for reducing the number of physical experiments performed while
maintaining the integrity of the POD statistics for the purposes of calculating risk of
structural failure. Now that it has been demonstrated that a CLDP hit/miss analysis has
been validated to provide reliable POD statistics compared to a traditional hit/miss
approach, a methodology must be presented for CLDP to achieve the goal of reducing
test specimens. Just demonstrating that the mean ases value is stable down to fewer
specimen subsets is not sufficient, because while it is more likely to produce a
conservative ases value (because while the standard deviation is growing the mean
a90/9s 1s also increasing), it is also very possible to produce a non-conservative a9o/s
value. This would defeat the purpose of having 95% confidence intervals for calculating
risk. The proposed CLDP methodology is as follows for evaluating a new SHM method:

a. Testalarge set of specimens (60), collecting SHM and truth data as frequently
as practical, at least 5 datapoints before and after the detection threshold.

b. Calculate the POD statistics according to the CLDP 2B2A hit/miss approach,
using 1000 random draws to generate asoos mean and standard deviation
values for specimen subsets down to 10 specimens (minimum)

c. Generate a table of “penalty factors” to assure with high confidence the aso9s
derived from fewer specimens is conservative, as follows:

(26 agoes of reduced dataset) + (agoos of full dataset) - (mean agoos of reduced dataset)

Future SHM-POD analysis would be conducted as follows:
a. Execute the selected number of experiments, perform CLDP 2B2A analysis.
b. If the asons value does not converge below the largest experimentally
observed value, conduct additional experiments until aso9s converges.
c. Penalized upper confidence bound can be generated by calculating penalty
factors for aios, azoms, asoms, a70/9s, aso/es and fitting the POD curve.
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CONCLUSIONS

This present work investigates a novel approach to deriving SHM-POD, leveraging
existing tools from MH1823. CLDP is a variation on a traditional hit/miss analysis with
two related nuances. First, rather than collecting a single datapoint from a recommended
distribution of flaw sizes, data is collected continuously for each specimen as the flaw
is grown, and subsequently selecting a set of two limit defining pairs above and below
the detection threshold. Second, when performing the hit/miss analysis covariance must
be used to account for the dependence of those pairs of data used for each specimen.

Experiments were conducted using the WISP FCG to validate the CLDP approach.
POD statistics were generated following a traditional hit/miss analysis, and the resulting
data illustrated that the traditional analysis yields a relatively large variation depending
on which points had been selected, and that the POD statistics were not very reliable for
fewer numbers of tested specimens. Subsequently the same dataset was evaluated using
CLDP. By steering the analysis to use the most “valuable” datapoints for each specimen,
the POD statistics yielded better convergence and more reliable results that were
consistent for many fewer tested specimens. Finally, a methodology was presented for
using the CLDP approach to determine SHM-POD for smaller quantities of experiments
by using a “penalty factor” to assure conservatism in the results.

Overall, this investigation was successful in its goal of developing and validating an
approach for generating SHM-POD, leveraging the strengths of SHM methods to
reduce the burden of testing more physical specimens. SHM has the potential to greatly
improve asset availability while reducing sustainment costs through CBM, and the
CLDP methodology provides a practical and reliable approach for evaluating the
detection sensitivity of SHM sensors so that these statistics can be applied to risk
assessments calculations consistent with current NDI practices.
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