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ABSTRACT

Finite element (FE) modeling has become a powerful tool in predicting the response
of various engineering structures. However, predictions from the numerical model often
differ from in-situ experimental measurements due to numerous approximations and
inaccuracies in the model. The in-situ experimental data obtained from the as-built
structure can be used to update selected model parameters to obtain a more accurate FE
model that truly reflects the behavior of the as-built structure. This research investigates
FE model updating by the modal property difference approach using eigenvalues and
eigenvectors. The modal property difference approach is a nonconvex optimization
problem, for which generic solvers cannot guarantee global optimality. However, the
problem can be reformulated into a biconvex problem so that the global optimum can
be found using a primal-relaxed dual (P-RD) decomposition approach. The formulation
of the model updating algorithm and examples that demonstrate its functionality are
presented in this paper.

INTRODUCTION

FE model updating refers to identifying the actual values of model parameters to
better capture the behavior of an as-built structure. This naturally lends itself to a
mathematical optimization problem where model parameters are optimized to minimize
the difference between the analytically predicted behaviors and experimental vibration.
To date, the most commonly studied optimization objectives are based in the frequency-
domain, i.e. attempting to minimize the difference between the analytical and
experimental modal properties. In general, the problem is nonconvex and global
optimality cannot be guaranteed using typical gradient search algorithms. To increase
the likelihood of finding the global optimum, previous researchers used gradient descent
methods with multiple, randomly generated starting points [1]. Stochastic global
optimization algorithms, such as the genetic algorithm and simulated annealing found
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in MATLAB’s Global Optimization Toolbox, are less likely to be trapped in local
optima but cannot guarantee that a global optimum has been found. In contrast,
deterministic global optimization algorithms take advantage of the mathematical
structure of the problem and guarantee global optimality of the solution or provides a
certificate of the tolerance in case of nonconvergence due to a limitation in computing
resources. For the modal property difference approach in FE model updating [1], its
biconvexity can be exploited and global optimality can be guaranteed using the primal-
relaxed dual (P-RD) decomposition approach [2]. The problem reformulation is first
presented, followed by a summary of the P-RD algorithm. Finally, two examples are
provided that show the validity of the model updating algorithm.

MODEL UPDATING FORMULATION

To perform model updating, the stiffness matrix for a structure with N-degrees of
freedom (DOFs) is first denoted by K(a) = K + 2;‘31 a;K; where K, € RV*V is the
nominal stiffness matrix; q; is the j-th entry of the stiffness updating variable a € R™«,
which represents the relative change of a stiffness parameter from the nominal value;
andK; € RN*N is the influence matrix corresponding to a;. It is assumed that the mass
matrix, M € RV*N is accurate enough and does not require updating.

The formulation considered in this research is based on the generalized eigenvalue
problem in structural dynamics:

[K(a) — AiM]{lI-’i} =0, i=1,..,Mmodes (1

where A; € R and {; € RY are the i-th eigenvalue and eigenvector, respectively, and
Nmodes denotes the number of modes. We can write 4; (&) and {; (a) since 4; and ;
implicitly depend on a. In general, eigenvectors extracted from experimental data are
limited to DOFs measured by sensors. To account for this, we define P} () € R™
that represents entries of s; (o) at n,, measured DOFs. The experimentally obtained

eigenvalues and eigenvectors are denoted as AF*P € R and l|J]-EXP M e R

i
respectively. In this research, the experimental eigenvector, quEXP’M, is normalized so
that the entry with the largest absolute value equals one. Accordingly, the same entry of
P’ () is normalized to be one.

The modal property difference formulation with the eigenvector difference
approach attempts to directly minimize the difference between the experimental and

analytical eigenvalues and eigenvectors [3]:

Mmodes
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i=1
subjectto L, < a < U,

where w;, and wy,, are weighting factors and Ly and U, are lower and upper bounds on

a, respectively. Recall that the implicit functions A; () and Y} (e) are originated from
the eigenvalue problem in Eq. (1). As a result, the objective function and the



optimization problem in Eq. (2) are nonconvex, for which local search algorithms
cannot guarantee global optimality.

Since the objective function in Eq. (2) is implicit on a, the problem needs to be
reformulated to apply the primal-relaxed dual (P-RD) algorithm, which requires explicit
objective and constraint functions. The implicit constraints of the generalized
eigenvalue equation in Eq. (1) can be converted to an explicit form by introducing the
analytical eigenvalue variable A = [A1,"**, An_ 40c]T € RMmodes; the analytical
eigenvector variable Y = [llJl; Wy des] € RN"modes where a semicolon is used to

vertically concatenate vectors; and the slack variable, § € R:

minimize §

oA P8
AP — 2
bj 16 < AEXP - <14, i=1
subject to S T L i=1, ..., Mpodes o
Weig * [K(a) — 4;M]{{;}
Ly<a<U,

L/‘li < Ai < U)Li, 1= 1, -« Mmodes
L‘l’i < lIJl' < UIIJL" 1= 1, - Mmodes

where 1 denotes a vector of all ones with appropriate dimension; we;q is a weighting
factor for the generalized eigenvalue equation; L, and Uy, are lower and upper bounds
on A;, respectively; and Ly, and Uy, are lower and upper bounds on {;, respectively.
Since the generalized eigenvalue equation in Eq. (3) is not constrained to be exactly
satisfied, the problem in Eq. (3) is an approximation of Eq. (2).

The only nonconvex term in Eq. (3) is the matrix-vector multiplication between
[K(a) — A;M] and {{5;}. By grouping a, A, and § as the so-called primal variable set
and P as the relaxed dual variable, the optimization problem in Eq. (3) is found to be
bilinear, which is a special case of biconvex. This means that when holding the primal
variables constant, the optimization problem over the dual variable is a linear program
(and thus convex), and vice versa for a constant dual variable. Therefore, the P-RD
algorithm can be used to find a global optimum.

PRIMAL-RELAXED DUAL ALGORITHM

In general, a biconvex optimization problem has the form:

minimize f(X,y)
Xy
subject to gi(X, Y) <0,i=1, oy Mineq (4)
hi(x,y) =0, i=1,..,n¢q

where for every fixed y value (and vice versa for every fixed X), the functions f(X,y)
and g;(Xx,y) are convex in X and h;(X,y) is affine in X. For biconvex problems, the P-
RD algorithm iteratively improves the upper and lower bound on the global optimum.



The algorithm converges when the upper bound from the primal problem, UB, is within
a predefined tolerance, ¢, of the lower bound from the relaxed dual problem, LB.
Constraints on the relaxed dual problem effectively partition the y variable space into
subregions. Regions can be pruned if the lower bound in that region, LB;, is greater than
the current best upper bound. The region with the smallest lower bound is selected for
further exploration in the next iteration.

In Figure 1(a), y is initially fixed to the value of y. This makes solving Eq. (4)
much easier since it is convex, or linear in the case of Eq. (3). This problem is named
the primal problem and the solution provides an upper bound on the global optimum.
Using the Lagrange multipliers and the solution x! of the primal problem, a series of
relaxed dual subproblems can be solved, corresponding to regions (1) and (2). Since
LB, < LBy, region (2) is considered for further examination. In Figure 1(b) and (c), the
primal problem is solved with y? corresponding to LB,. This provides a new upper
bound, UB,. Since y? is at a bound, only one subproblem needs to be solved and region
(2) is not subdivided. Due to the additional relaxed dual constraint, the lower bound
increases from LB, in the first iteration to LB3 in the second iteration. Figure 1(c) also
shows the projection of the objective function onto the y variable space as v(y).

In general, the primal problem is solved by fixing y in Eq. (4) to y* at the k-th
iteration. Each relaxed dual subproblem is defined over a particular partition of the y
variable space and contains an accumulation of constraints up to the k-th iteration
involving the Lagrangians of the primal problem. Since there is a collection of
constraints from previous iterations, the relaxed dual problem provides tighter under-
estimators each iteration. The value of y corresponding to the smallest regional lower
bound, LB;, is set as the new y* in the primal problem. The primal and relaxed dual
problems continue to be solved in an iterative fashion until the upper and lower bounds
are within the predefined tolerance, ¢. The global optimum is guaranteed to be within
the specified tolerance. Local searches may be performed in preprocessing and after
each iteration to find a better upper bound. For a more detailed description of the
algorithm and proof of convergence, see [2].
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Figure 1. Illustration of the P-RD algorithm.
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Figure 2. Plane truss structure.

TABLE I. STRUCTURAL PROPERTIES AND UPDATING RESULTS

Stiffness parameters Nominal Actual Upd.atmg a?ct a;j
value value variable 1
Modulus of E, 2.0 22 a, 0.10000 0.10000
Elasticity E, 2.0 1.8 a; -0.10000 | -0.10000
(<10 Nm?) | g 2.0 1.9 s -0.05000 | -0.05000
Sorine Stiff ky1 6.0 7.2 ay 0.20000 0.20002
pring Stiffness ) B
(x10° N/m?) k1 6.0 4.5 as 0.25000 0.25000
kya 6.0 54 Qg -0.10000 | -0.10000
VALIDATION EXAMPLES

Numerical Study of Plane Truss Structure

The P-RD algorithm for the model updating formulation in Eq. (3) is first validated
with a numerical simulation of the plane truss structure shown in Figure 2. The elastic
moduli are divided into three groups: £ for the top bars, E> for the diagonal and vertical
bars, and £3 for the bottom bars. Flexible supports are modeled as springs, shown as kxi,
ky1, and Ky in the figure. It is assumed that eight DOFs (marked with arrows) are
instrumented with sensors. The elastic moduli and the spring stiffnesses require
updating. Modal properties of the structure with actual/correct stiffness values, shown
in Table I, are used as “experimental” properties. Only the first mode is used for model
updating in this example (n,04es = 1). The bounds on the optimization variables are
setas a; € [—0.3,0.3], 4; € [0.8AF%F, 1.2A7%P], and ¢; € [-2- 1,2 - 1]. Weights are
set as wy, = Wy, = Wejg = 1. The convergence tolerance is § = 107>. On a computer
with an Intel 17-9700 CPU and 16 GB of RAM, it takes approximately 0.35 seconds to
find the globally optimal solution with a preprocessing local search. In Table I, the

updating variables at the solution are shown as a; and the actual values of the updating

variables are shown as ‘. The two groups of values are nearly identical within five
decimal places.

Four-Story Shear-Frame Structure with Experimental Data

Next, the algorithm is applied to experimental data from the laboratory four-story
shear-frame structure shown in Figure 3. The first three floors are instrumented with
accelerometers (n); = 3) and the first two modes are available for model updating
(Mmodes = 2). Shown in Figure 4, the four inter-story stiffnesses, kq, ..., k4, are
updated, corresponding to the four updating variables, a4, ..., @4, which quantify the



relative changes from nominal values. The bounds on the optimization variables are set
asa; € [—0.6,0.6], 4; € [0.8A7%F, 1.2A7*P] and ; € [-1.7 - 1, 1.7 - 1]. Weights are
set as wy, = wy,, = 1 and wej; = 1073, The convergence tolerance is §¢ = 107°. On
the same computer used in the previous section, it takes approximately 37 seconds to
converge to a global optimum (Figure 5). In Table II, the modal properties of the
nominal model and two different updated models are compared with the modes
extracted from the experimental data. One model is updated based on Eq. (2) using a
local search algorithm with 100 randomly generated starting points [1] while the other
model is updated based on Eq. (3) using the P-RD global optimization algorithm. The
analytical resonance frequency from the model is denotated as f; and the error is
calculated as:

| f.EXP _ fl
Af; = le—XPl x 100% (5)
L
where fEXP is the experimental resonance frequency. The modal assurance criterion
(MAC) is defined as:

EXP,M

o _ (T2
L I EXPM 2 e M (12

(1t WL N
The MAC ranges from 0 to 1, with values closer to 1 representing vectors that are

more similar to each other. It can be seen that the modal properties of both updated
models match the experimental results much more closely than the nominal model.
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i=1,..,Mmodes (6)
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Figure 3. Test set-up. Figure 4. Model. Figure 5. Convergence plot.

TABLE II. MODAL PROPERTIES OF NOMINAL AND UPDATED MODELS

Exp. Nominal model Local update [1] P-RD update
Modes fEXP fi Af; MAC fi Af; MAC fi Af; MAC
(Hz) | (Hz) | (%) (Hz) | (%) (Hz) | (%)
I 0.88 099 | 12.0 | 1.0000 | 0.88 | 0.71 | 0.9996 | 0.88 | 0.28 | 0.9994
2nd 2.75 285 | 3.64 | 09317 | 2.77 | 0.68 | 0.9999 | 2.75 | 0.16 | 0.9998




CONCLUSIONS

FE model updating algorithms previously studied are unable to guarantee global
optimality. Therefore, this paper investigates the application of the P-RD global
optimization algorithm on the eigenvector difference formulation. The eigenvector
difference problem is first reformulated into a biconvex form. The P-RD algorithm can
then find a global optimum by iteratively solving the primal problem followed by the
relaxed dual problem. The algorithm terminates when the upper bound of the optimal
objective function value is within a specified tolerance of the lower bound or provides
a certificate of the duality gap in case the computation does not converge due to
limitation in computing resources. The FE model updating algorithm is validated
through two examples: (i) a numerical study of a plane truss structure and (ii)
experimental data of a four-story shear-frame structure. The stiffness parameters of the
plane truss structure were successfully identified to a high degree of accuracy. Using
experimental data of a four-story shear-frame structure, the four inter-story stiffnesses
were able to be updated. The modes simulated from the updated model are shown to
match the experimental modal properties much more closely than the nominal model.
These examples exhibit how the updated model can better represent the behavior of the
as-built structure.
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