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ABSTRACT 
 

Finite element (FE) modeling has become a powerful tool in predicting the response 
of various engineering structures. However, predictions from the numerical model often 
differ from in-situ experimental measurements due to numerous approximations and 
inaccuracies in the model. The in-situ experimental data obtained from the as-built 
structure can be used to update selected model parameters to obtain a more accurate FE 
model that truly reflects the behavior of the as-built structure. This research investigates 
FE model updating by the modal property difference approach using eigenvalues and 
eigenvectors. The modal property difference approach is a nonconvex optimization 
problem, for which generic solvers cannot guarantee global optimality. However, the 
problem can be reformulated into a biconvex problem so that the global optimum can 
be found using a primal-relaxed dual (P-RD) decomposition approach. The formulation 
of the model updating algorithm and examples that demonstrate its functionality are 
presented in this paper. 

 
 

INTRODUCTION 
 

FE model updating refers to identifying the actual values of model parameters to 
better capture the behavior of an as-built structure. This naturally lends itself to a 
mathematical optimization problem where model parameters are optimized to minimize 
the difference between the analytically predicted behaviors and experimental vibration. 
To date, the most commonly studied optimization objectives are based in the frequency- 
domain, i.e. attempting to minimize the difference between the analytical and 
experimental modal properties. In general, the problem is nonconvex and global 
optimality cannot be guaranteed using typical gradient search algorithms. To increase 
the likelihood of finding the global optimum, previous researchers used gradient descent 
methods with multiple, randomly generated starting points [1]. Stochastic global 
optimization algorithms, such as the genetic algorithm and simulated annealing found 
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in MATLAB’s Global Optimization Toolbox, are less likely to be trapped in local 
optima but cannot guarantee that a global optimum has been found. In contrast, 
deterministic global optimization algorithms take advantage of the mathematical 
structure of the problem and guarantee global optimality of the solution or provides a 
certificate of the tolerance in case of nonconvergence due to a limitation in computing 
resources. For the modal property difference approach in FE model updating [1], its 
biconvexity can be exploited and global optimality can be guaranteed using the primal-
relaxed dual (P-RD) decomposition approach [2]. The problem reformulation is first 
presented, followed by a summary of the P-RD algorithm. Finally, two examples are 
provided that show the validity of the model updating algorithm. 
 
 
MODEL UPDATING FORMULATION 
 

To perform model updating, the stiffness matrix for a structure with 𝑁𝑁-degrees of 
freedom (DOFs) is first denoted by 𝐊𝐊(𝛂𝛂) = 𝐊𝐊0 + ∑ 𝛼𝛼𝑗𝑗𝐊𝐊𝑗𝑗

𝑛𝑛𝛂𝛂
𝑗𝑗=1  where 𝐊𝐊0 ∈ ℝ𝑁𝑁×𝑁𝑁 is the 

nominal stiffness matrix; 𝛼𝛼𝑗𝑗 is the 𝑗𝑗-th entry of the stiffness updating variable 𝛂𝛂 ∈ ℝ𝑛𝑛α, 
which represents the relative change of a stiffness parameter from the nominal value; 
and 𝐊𝐊𝑗𝑗 ∈ ℝ𝑁𝑁×𝑁𝑁 is the influence matrix corresponding to 𝛼𝛼𝑗𝑗. It is assumed that the mass 
matrix, 𝐌𝐌 ∈ ℝ𝑁𝑁×𝑁𝑁, is accurate enough and does not require updating. 

The formulation considered in this research is based on the generalized eigenvalue 
problem in structural dynamics: 
 

[𝐊𝐊(𝛂𝛂) − 𝜆𝜆𝑖𝑖𝐌𝐌]{𝛙𝛙𝑖𝑖} = 𝟎𝟎,    𝑖𝑖 = 1, … ,𝑛𝑛modes (1) 
 
where 𝜆𝜆𝑖𝑖 ∈ ℝ and 𝛙𝛙𝑖𝑖 ∈ ℝ𝑁𝑁 are the 𝑖𝑖-th eigenvalue and eigenvector, respectively, and 
𝑛𝑛modes denotes the number of modes. We can write 𝜆𝜆𝑖𝑖(𝛂𝛂) and 𝛙𝛙𝑖𝑖(𝛂𝛂) since 𝜆𝜆𝑖𝑖 and 𝛙𝛙𝑖𝑖 
implicitly depend on 𝛂𝛂. In general, eigenvectors extracted from experimental data are 
limited to DOFs measured by sensors. To account for this, we define 𝛙𝛙𝑖𝑖

ℳ(𝛂𝛂) ∈ ℝ𝑛𝑛ℳ  
that represents entries of 𝛙𝛙𝑖𝑖(𝛂𝛂) at 𝑛𝑛ℳ measured DOFs. The experimentally obtained 
eigenvalues and eigenvectors are denoted as 𝜆𝜆𝑖𝑖EXP ∈ ℝ and 𝛙𝛙𝑖𝑖

EXP,ℳ ∈ ℝ𝑛𝑛ℳ , 
respectively. In this research, the experimental eigenvector, 𝛙𝛙𝑖𝑖

EXP,ℳ, is normalized so 
that the entry with the largest absolute value equals one. Accordingly, the same entry of  
𝛙𝛙𝑖𝑖
ℳ(𝛂𝛂) is normalized to be one. 

The modal property difference formulation with the eigenvector difference 
approach attempts to directly minimize the difference between the experimental and 
analytical eigenvalues and eigenvectors [3]: 
 

minimize
𝛂𝛂

  � ��
𝜆𝜆𝑖𝑖EXP − 𝜆𝜆𝑖𝑖(𝛂𝛂)

𝜆𝜆𝑖𝑖EXP
∙ 𝑤𝑤𝜆𝜆𝑖𝑖�

2

+ ��𝛙𝛙𝑖𝑖
EXP,ℳ −𝛙𝛙𝑖𝑖

ℳ(𝛂𝛂)� ∙ 𝑤𝑤𝛙𝛙𝑖𝑖�2
2
�

𝑛𝑛modes

𝑖𝑖=1

 (2) 

subject to   𝐋𝐋𝛂𝛂 ≤ 𝛂𝛂 ≤ 𝐔𝐔𝛂𝛂 
 
where 𝑤𝑤𝜆𝜆𝑖𝑖 and 𝑤𝑤𝛙𝛙𝑖𝑖 are weighting factors and 𝐋𝐋𝛂𝛂 and 𝐔𝐔𝛂𝛂 are lower and upper bounds on 
𝛂𝛂, respectively. Recall that the implicit functions 𝜆𝜆𝑖𝑖(𝛂𝛂) and 𝛙𝛙𝑖𝑖

ℳ(𝛂𝛂) are originated from 
the eigenvalue problem in Eq. (1). As a result, the objective function and the 



optimization problem in Eq. (2) are nonconvex, for which local search algorithms 
cannot guarantee global optimality. 

Since the objective function in Eq. (2) is implicit on 𝛂𝛂, the problem needs to be 
reformulated to apply the primal-relaxed dual (P-RD) algorithm, which requires explicit 
objective and constraint functions. The implicit constraints of the generalized 
eigenvalue equation in Eq. (1) can be converted to an explicit form by introducing the 
analytical eigenvalue variable 𝛌𝛌 = [𝜆𝜆1,⋯ , 𝜆𝜆𝑛𝑛modes]T ∈ ℝ𝑛𝑛modes; the analytical 
eigenvector variable 𝛙𝛙 = �𝛙𝛙1;⋯ ;𝛙𝛙𝑛𝑛modes� ∈ ℝ

𝑁𝑁∙𝑛𝑛modes where a semicolon is used to 
vertically concatenate vectors; and the slack variable, 𝛿𝛿 ∈ ℝ: 
 

 
where 𝟏𝟏 denotes a vector of all ones with appropriate dimension; 𝑤𝑤eig is a weighting 
factor for the generalized eigenvalue equation; 𝐿𝐿𝜆𝜆𝑖𝑖 and 𝑈𝑈𝜆𝜆𝑖𝑖 are lower and upper bounds 
on 𝜆𝜆𝑖𝑖, respectively; and 𝐋𝐋𝛙𝛙𝑖𝑖 and 𝐔𝐔𝛙𝛙𝑖𝑖 are lower and upper bounds on 𝛙𝛙𝑖𝑖, respectively. 
Since the generalized eigenvalue equation in Eq. (3) is not constrained to be exactly 
satisfied, the problem in Eq. (3) is an approximation of Eq. (2). 

The only nonconvex term in Eq. (3) is the matrix-vector multiplication between 
[𝐊𝐊(𝛂𝛂) − 𝜆𝜆𝑖𝑖𝐌𝐌] and {𝛙𝛙𝑖𝑖}. By grouping 𝛂𝛂, 𝛌𝛌, and 𝛿𝛿 as the so-called primal variable set 
and 𝛙𝛙 as the relaxed dual variable, the optimization problem in Eq. (3) is found to be 
bilinear, which is a special case of biconvex. This means that when holding the primal 
variables constant, the optimization problem over the dual variable is a linear program 
(and thus convex), and vice versa for a constant dual variable. Therefore, the P-RD 
algorithm can be used to find a global optimum. 
 
 
PRIMAL-RELAXED DUAL ALGORITHM 
 
In general, a biconvex optimization problem has the form: 
 

 
where for every fixed 𝐲𝐲 value (and vice versa for every fixed 𝐱𝐱), the functions 𝑓𝑓(𝐱𝐱,𝐲𝐲) 
and 𝑔𝑔𝑖𝑖(𝐱𝐱,𝐲𝐲) are convex in 𝐱𝐱 and ℎ𝑖𝑖(𝐱𝐱,𝐲𝐲) is affine in 𝐱𝐱. For biconvex problems, the P-
RD algorithm iteratively improves the upper and lower bound on the global optimum. 

minimize
𝛂𝛂,𝛌𝛌,𝛙𝛙,𝛿𝛿

      𝛿𝛿 

(3) 
subject to  − 𝟏𝟏𝛿𝛿 ≤

⎣
⎢
⎢
⎢
⎡ 𝜆𝜆𝑖𝑖EXP − 𝜆𝜆𝑖𝑖

𝜆𝜆𝑖𝑖EXP
∙ 𝑤𝑤𝜆𝜆𝑖𝑖

�𝛙𝛙𝑖𝑖
EXP,ℳ −𝛙𝛙𝑖𝑖

ℳ� ∙ 𝑤𝑤𝛙𝛙𝑖𝑖

𝑤𝑤eig ∙ [𝐊𝐊(𝛂𝛂) − 𝜆𝜆𝑖𝑖𝐌𝐌]{𝛙𝛙𝑖𝑖} ⎦
⎥
⎥
⎥
⎤

≤ 𝟏𝟏𝛿𝛿,  𝑖𝑖 = 1, … ,𝑛𝑛modes 

𝐋𝐋𝛂𝛂 ≤ 𝛂𝛂 ≤ 𝐔𝐔𝛂𝛂 
𝐿𝐿𝜆𝜆𝑖𝑖 ≤ 𝜆𝜆𝑖𝑖 ≤ 𝑈𝑈𝜆𝜆𝑖𝑖 ,  𝑖𝑖 = 1, … , 𝑛𝑛modes 
𝐋𝐋𝛙𝛙𝑖𝑖 ≤ 𝛙𝛙𝑖𝑖 ≤ 𝐔𝐔𝛙𝛙𝑖𝑖 ,  𝑖𝑖 = 1, … ,𝑛𝑛modes 

minimize
𝐱𝐱,𝐲𝐲

  𝑓𝑓(𝐱𝐱, 𝐲𝐲) 
(4) subject to  𝑔𝑔𝑖𝑖(𝐱𝐱,𝐲𝐲) ≤ 0,  𝑖𝑖 = 1, … ,𝑛𝑛ineq 

 ℎ𝑖𝑖(𝐱𝐱, 𝐲𝐲) = 0,  𝑖𝑖 = 1, … ,𝑛𝑛eq 



The algorithm converges when the upper bound from the primal problem, 𝑈𝑈𝑈𝑈, is within 
a predefined tolerance, 𝜉𝜉, of the lower bound from the relaxed dual problem, 𝐿𝐿𝐿𝐿. 
Constraints on the relaxed dual problem effectively partition the 𝐲𝐲 variable space into 
subregions. Regions can be pruned if the lower bound in that region, 𝐿𝐿𝐿𝐿𝑖𝑖, is greater than 
the current best upper bound. The region with the smallest lower bound is selected for 
further exploration in the next iteration. 

In Figure 1(a), 𝑦𝑦 is initially fixed to the value of 𝑦𝑦1. This makes solving Eq. (4) 
much easier since it is convex, or linear in the case of Eq. (3). This problem is named 
the primal problem and the solution provides an upper bound on the global optimum. 
Using the Lagrange multipliers and the solution 𝑥𝑥1 of the primal problem, a series of 
relaxed dual subproblems can be solved, corresponding to regions ① and ②. Since 
𝐿𝐿𝐿𝐿2 < 𝐿𝐿𝐿𝐿1, region ② is considered for further examination. In Figure 1(b) and (c), the 
primal problem is solved with 𝑦𝑦2 corresponding to 𝐿𝐿𝐿𝐿2. This provides a new upper 
bound, 𝑈𝑈𝑈𝑈2. Since 𝑦𝑦2 is at a bound, only one subproblem needs to be solved and region 
② is not subdivided. Due to the additional relaxed dual constraint, the lower bound 
increases from 𝐿𝐿𝐿𝐿2 in the first iteration to 𝐿𝐿𝐿𝐿3 in the second iteration. Figure 1(c) also 
shows the projection of the objective function onto the 𝑦𝑦 variable space as 𝑣𝑣(𝑦𝑦). 

In general, the primal problem is solved by fixing 𝐲𝐲 in Eq. (4) to 𝐲𝐲𝑘𝑘 at the 𝑘𝑘-th 
iteration. Each relaxed dual subproblem is defined over a particular partition of the 𝐲𝐲 
variable space and contains an accumulation of constraints up to the 𝑘𝑘-th iteration 
involving the Lagrangians of the primal problem. Since there is a collection of 
constraints from previous iterations, the relaxed dual problem provides tighter under-
estimators each iteration. The value of 𝐲𝐲 corresponding to the smallest regional lower 
bound, 𝐿𝐿𝐿𝐿𝑖𝑖, is set as the new 𝐲𝐲𝑘𝑘 in the primal problem. The primal and relaxed dual 
problems continue to be solved in an iterative fashion until the upper and lower bounds 
are within the predefined tolerance, 𝜉𝜉. The global optimum is guaranteed to be within 
the specified tolerance. Local searches may be performed in preprocessing and after 
each iteration to find a better upper bound. For a more detailed description of the 
algorithm and proof of convergence, see [2]. 
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Figure 1. Illustration of the P-RD algorithm. 



 
 

Figure 2. Plane truss structure. 
 

TABLE I. STRUCTURAL PROPERTIES AND UPDATING RESULTS 

Stiffness parameters Nominal 
value 

Actual 
value 

Updating 
variable  𝛼𝛼𝑗𝑗act   𝛼𝛼𝑗𝑗∗ 

Modulus of 
Elasticity 

(×1011 N/m2) 

E1 2.0 2.2 𝛼𝛼1 0.10000 0.10000 
E2 2.0 1.8 𝛼𝛼2 -0.10000 -0.10000 
E3 2.0 1.9 𝛼𝛼3 -0.05000 -0.05000 

Spring Stiffness 
(×106 N/m2) 

ky1 6.0 7.2 𝛼𝛼4 0.20000 0.20002 
kx1 6.0 4.5 𝛼𝛼5 -0.25000 -0.25000 
ky2 6.0 5.4 𝛼𝛼6 -0.10000 -0.10000 

 
 
VALIDATION EXAMPLES 
 
Numerical Study of Plane Truss Structure 
 

The P-RD algorithm for the model updating formulation in Eq. (3) is first validated 
with a numerical simulation of the plane truss structure shown in Figure 2. The elastic 
moduli are divided into three groups: E1 for the top bars, E2 for the diagonal and vertical 
bars, and E3 for the bottom bars. Flexible supports are modeled as springs, shown as kx1, 
ky1, and ky2 in the figure. It is assumed that eight DOFs (marked with arrows) are 
instrumented with sensors. The elastic moduli and the spring stiffnesses require 
updating. Modal properties of the structure with actual/correct stiffness values, shown 
in Table I, are used as “experimental” properties. Only the first mode is used for model 
updating in this example (𝑛𝑛modes = 1). The bounds on the optimization variables are 
set as 𝛼𝛼𝑗𝑗 ∈ [−0.3,0.3], 𝜆𝜆𝑖𝑖 ∈ �0.8𝜆𝜆𝑖𝑖EXP, 1.2𝜆𝜆𝑖𝑖EXP�, and 𝛙𝛙𝑖𝑖 ∈ [−2 ∙ 𝟏𝟏, 2 ∙ 𝟏𝟏]. Weights are 
set as 𝑤𝑤𝜆𝜆𝑖𝑖 = 𝑤𝑤𝛙𝛙𝑖𝑖 = 𝑤𝑤eig = 1. The convergence tolerance is 𝜉𝜉 = 10−5. On a computer 
with an Intel i7-9700 CPU and 16 GB of RAM, it takes approximately 0.35 seconds to 
find the globally optimal solution with a preprocessing local search. In Table I, the 
updating variables at the solution are shown as 𝛼𝛼𝑗𝑗∗ and the actual values of the updating 
variables are shown as 𝛼𝛼𝑗𝑗act. The two groups of values are nearly identical within five 
decimal places. 
 
Four-Story Shear-Frame Structure with Experimental Data 
 

Next, the algorithm is applied to experimental data from the laboratory four-story 
shear-frame structure shown in Figure 3. The first three floors are instrumented with 
accelerometers (𝑛𝑛ℳ = 3) and the first two modes are available for model updating 
(𝑛𝑛modes = 2). Shown in Figure 4, the four inter-story stiffnesses, 𝑘𝑘1, … , 𝑘𝑘4, are 
updated, corresponding to the four updating variables, 𝛼𝛼1, … ,𝛼𝛼4, which quantify the 



relative changes from nominal values. The bounds on the optimization variables are set 
as 𝛼𝛼𝑗𝑗 ∈ [−0.6,0.6], 𝜆𝜆𝑖𝑖 ∈ �0.8𝜆𝜆𝑖𝑖EXP, 1.2𝜆𝜆𝑖𝑖EXP�, and 𝛙𝛙𝑖𝑖 ∈ [−1.7 ∙ 𝟏𝟏, 1.7 ∙ 𝟏𝟏]. Weights are 
set as 𝑤𝑤𝜆𝜆𝑖𝑖 = 𝑤𝑤𝛙𝛙𝑖𝑖 = 1 and 𝑤𝑤eig = 10−3. The convergence tolerance is 𝜉𝜉 = 10−5. On 
the same computer used in the previous section, it takes approximately 37 seconds to 
converge to a global optimum (Figure 5). In Table II, the modal properties of the 
nominal model and two different updated models are compared with the modes 
extracted from the experimental data. One model is updated based on Eq. (2) using a 
local search algorithm with 100 randomly generated starting points [1] while the other 
model is updated based on Eq. (3) using the P-RD global optimization algorithm. The 
analytical resonance frequency from the model is denotated as 𝑓𝑓𝑖𝑖 and the error is 
calculated as: 
 

∆𝑓𝑓𝑖𝑖 =
�𝑓𝑓𝑖𝑖EXP − 𝑓𝑓𝑖𝑖�

𝑓𝑓𝑖𝑖EXP
× 100% (5) 

 
where 𝑓𝑓𝑖𝑖EXP is the experimental resonance frequency. The modal assurance criterion 
(MAC) is defined as: 
 

MAC𝑖𝑖 =
((𝛙𝛙𝑖𝑖

EXP,ℳ)T𝛙𝛙𝑖𝑖
ℳ)2

�𝛙𝛙𝑖𝑖
EXP,ℳ�

2

2
�𝛙𝛙𝑖𝑖

ℳ�
2
2 ,    𝑖𝑖 = 1, … ,𝑛𝑛modes (6) 

 
The MAC ranges from 0 to 1, with values closer to 1 representing vectors that are 

more similar to each other. It can be seen that the modal properties of both updated 
models match the experimental results much more closely than the nominal model. 
 

   
Iteration 

 
Figure 3. Test set-up. Figure 4. Model. Figure 5. Convergence plot. 

 
TABLE II. MODAL PROPERTIES OF NOMINAL AND UPDATED MODELS 

Modes 
Exp. Nominal model Local update [1] P-RD update 
 𝑓𝑓𝑖𝑖EXP 𝑓𝑓𝑖𝑖  ∆𝑓𝑓𝑖𝑖  MAC 𝑓𝑓𝑖𝑖  ∆𝑓𝑓𝑖𝑖  MAC 𝑓𝑓𝑖𝑖  ∆𝑓𝑓𝑖𝑖  MAC 
(Hz) (Hz) (%)  (Hz) (%)  (Hz) (%)  

1st 0.88 0.99 12.0 1.0000 0.88 0.71 0.9996 0.88 0.28 0.9994 
2nd 2.75 2.85 3.64 0.9317 2.77 0.68 0.9999 2.75 0.16 0.9998 
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CONCLUSIONS 
 

FE model updating algorithms previously studied are unable to guarantee global 
optimality. Therefore, this paper investigates the application of the P-RD global 
optimization algorithm on the eigenvector difference formulation. The eigenvector 
difference problem is first reformulated into a biconvex form. The P-RD algorithm can 
then find a global optimum by iteratively solving the primal problem followed by the 
relaxed dual problem. The algorithm terminates when the upper bound of the optimal 
objective function value is within a specified tolerance of the lower bound or provides 
a certificate of the duality gap in case the computation does not converge due to 
limitation in computing resources. The FE model updating algorithm is validated 
through two examples: (i) a numerical study of a plane truss structure and (ii) 
experimental data of a four-story shear-frame structure. The stiffness parameters of the 
plane truss structure were successfully identified to a high degree of accuracy. Using 
experimental data of a four-story shear-frame structure, the four inter-story stiffnesses 
were able to be updated. The modes simulated from the updated model are shown to 
match the experimental modal properties much more closely than the nominal model. 
These examples exhibit how the updated model can better represent the behavior of the 
as-built structure. 
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