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ABSTRACT 
 

Structural health monitoring (SHM) aims to assess damage intensity and provide 
engineers with data to make informed maintenance and repair decisions. SHM 
systems collect crucial information for evaluating a structure's current state, enabling 
appropriate maintenance decisions and loss mitigation. Therefore, it is crucial to 
acquire damage-sensitive data by using a well-designed SHM system that is optimal in 
terms of expenses as well as functionality. In this research, we present an optimal 
sensor placement framework that considers two stages of the structure’s lifespan: (1) 
an early-stage pre-posterior design, and (2) a periodically updated sensor design in the 
operational stage. 

 
When the sensors are designed initially in the pre-posterior stage, there is no data 
available to make informed design assumptions for designing the SHM system. As a 
result, all the uncertainties and damage evolution models for the structure need to be 
modeled probabilistically based on reasonable assumptions derived from historical 
perspective and engineering judgment. The early-stage design of an SHM system 
initiates the data acquisition and serves two primary purposes: (1) helps update the 
current state of the structure, and (2) supports data-informed maintenance decisions. 
As the structure degrades over time, despite periodic maintenance, it is bound to 
approach the limiting or critical damage state. This warrants an even better inference 
of damage state with the goal of avoiding the worst scenario of failure. In addition, 
another reason to update the sensor design while in the operational stage is to optimize 
the SHM system by making it more suitable to the current structural state and benefit 
from the data acquired through the pre-posterior design. Periodically updating the 
design yields the best risk to reward for an SHM system in terms of its expenses and 
functionality. We demonstrate the application of the proposed framework on a real- 
world complex miter gate structure. 
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INTRODUCTION 
 

The objective of SHM is to evaluate the severity of damage and furnish engineers 

with relevant information for making informed choices about maintenance and repairs. 

An SHM system achieves this target by gathering critical data that helps to determine 

the present condition of the structure (diagnostics) and probabilistically forecasting the 

evolution of the damage state (prognostics). This not only enables engineers to make 

appropriate maintenance decisions for the current diagnosed state but also to plan 

future actions, ensuring the reliability and safety of the structure.  

While the data obtained from an SHM system facilitates informed decision-

making and enhances our comprehension of the system, it is important to consider the 

costs involved in designing, developing, installing, maintaining, and operating the 

system. As such, the true potential of the SHM process can be unleashed by optimally 

designing the SHM system that aims at maximizing the Value of Information (see 

[1,2,3]) and would also be a crucial part of creating a digital twin for the lifecycle 

management of the structure (see [4,5]). 

In this paper, an extension to our previous efforts (see [6-7]), we focus on the 

optimization effort that primarily targets the optimal “when” and “where” of data 

acquisition that fuels the SHM engine. We propose doing this by making two 

observations: (1) It is often observed that an SHM system is not necessary during the 

early pristine phase a structure’s life cycle, when the risk of failure or catastrophic 

damage is minimal. Therefore, during this phase, the SHM system can be a cost 

liability rather than an asset. However, as the structure evolves, acquiring additional 

information about the structural state becomes increasingly valuable for decision-

making. As the risk of failure increases, the need for more information about the 

structural state also increases. Consequently, the quantity of information gathered is 

directly related to the risk of an unwanted event occurring. Exploiting this relationship, 

we propose an approach that determines when additional resources should be allocated 

to gather more information, thereby optimizing the monitoring of the structure in the 

time domain; (2) The spatial arrangement of sensors depends on the damage that 

needs to be inferred. The proposed approach also obtains and updates the spatial 

arrangement of sensors that maximizes the target objective function. As a result, our 

proposed optimization framework covers both temporal and spatial dimensions.  

In the following writeup, we motivate and demonstrate the proposed time-

dependent sensor optimization framework on a case study involving structural health 

monitoring of a miter gate that is part of a lock system enabling navigation of inland 

waterways. The inland waterways navigation infrastructure is operated and maintained 

by the United States Army Corps of Engineers (USACE). 

 

 

THE STRUCTURE, LOADING, AND DAMAGE EVOLUTION MODEL 

 

Consider the Greenup miter gate shown in Fig. 1. Over its life cycle, the gate is 

subjected to uncertain loading, denoted by the random vector 𝐻(𝑡) with a realization 

ℎ(𝑡) ∈ 𝛺𝐻(𝑡). The upstream and downstream water head is denoted by ℎ𝑢𝑝(𝑡) and 

ℎ𝑑𝑜𝑤𝑛(𝑡) , such that ℎ(𝑡) = {ℎ𝑢𝑝(𝑡), ℎ𝑑𝑜𝑤𝑛(𝑡)} . The state of the miter gate is 

assumed to be completely defined by the loss of boundary contact (or a “gap”) 

between the gate and the concrete wall at the bottom of the gate. This is referred to as 



a gap-length (a scalar state-parameter defined at time 𝑡), denoted by 𝜃(𝑡) ∈ ΩΘ(𝑡). At 

𝜃 = 𝜃𝑚𝑖𝑛 = 0 inches (lower bound) the gate is pristine. Based on the suggestions 

from USACE field engineers, the limit 𝜃 = 𝜃𝑚𝑎𝑥 = 180 inches is assigned as the 

upper bound of loss of boundary contact at which point the gate is considered to be 

failed and nonoperational.  

 
Figure 1. Greenup miter gate (figure adopted from Chadha et al. [1]) 

 

To capture the prior understanding of how the damage might evolve 

probabilistically, we utilize a piecewise multi-stage prior gap degradation model, 

which is explained in Section 5.1 of Chadha et al. [1], illustrated in Fig. 2. The figure 

also illustrates the mean gap curve and the standard deviation of gap over time, 

denoted by 𝜇𝜃(𝑡) and 𝜎𝜃(𝑡) respectively. Another curve that is crucial to our proposed 

dynamic sensor design framework is the Coefficient of Variation (COV) of prior 

degradation model denoted by 𝜌𝑝𝑟𝑖𝑜𝑟(𝑡) = 𝜎𝜃(𝑡)/𝜇𝜃(𝑡) (plotted in red with scale on 

the right y-axis in Fig. 2).  

 
Figure 2. Probabilistic prior gap degradation model 

 

Since sensor optimization over the lifecycle warrants sensor measurements for 

different loading conditions at different instances of time and damage level, it is 

necessary to simulate the ground truth. We do so by using a high-fidelity finite 

element model or its digital surrogate (see [8]). Let the observed measurements for a 

set of sensors at time 𝑡 be denoted by 𝑥(𝑡) ∈ Ω𝑋(𝑡). We obtain 𝑥(𝑡) by adding the 

noise vector 𝜀(𝑡) ∈ Ω𝜁(𝑡) to the ground-truth value of sensor measurement obtained 

using the finite element method (FEM) model 𝑔(𝜃(𝑡), ℎ(𝑡); 𝑡). That is, 

 

𝑥(𝑡) = 𝑔(𝜃(𝑡), ℎ(𝑡); 𝑡) + 𝜀(𝑡) (1) 

 

Bayesian inference can then be used to infer the posterior distribution of the gap value 

(see Chadha et al. [1] and Ramancha at al. [9]) denoted by 𝑓Θ(𝑡)|X(𝑡)(𝜃(𝑡)|𝑥(𝑡)).  



 

THE OPTIMIZATION FRAMEWORK 

 

The proposed sensor optimization framework spans temporal as well as spatial 

dimensions. We first consider the temporal dimension. In the time domain, the 

proposed sensor optimization occurs in stages. During the early stages of the 

structure’s lifespan, there is no urgent need for additional information about its health. 

As a result, the uncertainty in the damage parameter is acceptable up to a certain point 

in time without any significant risk of unwanted events. We use the prior COV 

𝜌𝑝𝑟𝑖𝑜𝑟(𝑡) to quantify the uncertainty in the gap value since it’s a measure of the 

standard deviation of gap relative to its mean. As time progresses, there comes a point 

where additional information is necessary to gain a better understanding of the 

structural health or to infer the posterior of the gap. We refer to this as the stage 1 

design that occurs at time 𝑡1̅. 

To obtain the time 𝑡1̅ and the subsequent time for next stages, we perform a pre-

posterior optimization of a Bayes risk function Ψtemporal(𝜌(𝑡);  𝑡) defined to capture 

the consequence of various levels of uncertainties 𝜌(𝑡) ∈ [0,1] . We delineate 

sequential steps of reasoning to formulate Ψtemporal(𝜌(𝑡);  𝑡) as follows: 

 

Step 1: For each time instance 𝑡, we consider the realizations of the prior distribution 

of the gap value, denoted by 𝑓Θ(𝑡)(𝜃(𝑡)), to be the possible true value. Then we 

consider various levels of uncertainty quantified by coefficient of variation 𝜌(𝑡) =
𝜎(𝑡)

𝜃(𝑡)
∈ [0,1]. For each realization pair (𝜃(𝑡), 𝜌(𝑡)) we assume a normal distribution 

𝑁(𝜃(𝑡), 𝜎(𝑡) = 𝜌(𝑡)𝜃(𝑡)) to quantify distribution of the gap value with 𝜃(𝑡) as its 

mean and coefficient of variation 𝜌(𝑡). If the realization 𝜃(𝑡) is less than 𝜃𝑚𝑎𝑥 , it 

implies that the assumed true gap at time 𝑡 is safe (an event denoted by S), and if 𝜃(𝑡) 

is greater than 𝜃𝑚𝑎𝑥, it denotes that the assumed true gap at time 𝑡 is not safe (an event 

denoted by 𝐹). That is,  

 

𝜃(𝑡) < 𝜃𝑚𝑎𝑥 ⟹  𝑃(𝑆) = 1 and 𝑃(𝐹) = 0  
𝜃(𝑡) > 𝜃𝑚𝑎𝑥 ⟹  𝑃(𝑆) = 0 and 𝑃(𝐹) = 1 

(2) 

  

Step 2: Let 𝜙(𝑡) denote a realization of 𝑁(𝜃(𝑡), 𝜎(𝑡)). If 𝜙(𝑡) is greater than 𝜃𝑚𝑎𝑥, 

it then reflects the case of nonoperational limit state, represented by the event 𝐹̂. On 

the other hand, if 𝜙(𝑡) is less than 𝜃𝑚𝑎𝑥, it then indicates the case of a safe structure, 

represented by the event 𝑆̂.  

 

Step 3: We now define the following conditional probabilities: 

 

𝑃(𝑆̂|𝐹) = 𝑃(𝑆̂|𝑆) = Φ (
𝜃𝑚𝑎𝑥 − 𝜃(𝑡)

𝜌(𝑡)𝜃(𝑡)
 ) 

𝑃(𝐹̂|𝐹) = 𝑃(𝐹̂|𝑆) = 1 − Φ (
𝜃𝑚𝑎𝑥 − 𝜃(𝑡)

𝜌(𝑡)𝜃(𝑡)
 ) 

(3) 

 

 



Step 5: For each realization 𝜃(𝑡), and the coefficient of variation 𝜌(𝑡) ∈ [0,1] at time 

𝑡, we define the expected risk/consequence 𝐶(𝜃(𝑡), 𝜌(𝑡); 𝑡) as: 

 

𝐶(𝜃(𝑡), 𝜌(𝑡); 𝑡)

= 𝑐10𝑃(𝐹̂|𝑆). 𝑃(𝑆) + 𝑐00𝑃(𝑆̂|𝑆). 𝑃(𝑆) + 𝑐11𝑃(𝐹̂|𝐹). 𝑃(𝐹)

+ 𝑐01𝑃(𝑆̂|𝐹). 𝑃(𝐹) 

(4) 

 

Here, 𝑐𝑖𝑗 is the nominal consequence cost of a decision by assuming that the structure 

is in state 𝑖 ∈ {0,1} while its true state is 𝑗 ∈ {0,1}. Here, 0 denotes safe, while 1 

denotes not safe (binary decision). Since these are nominal costs, we assume 𝑐01 = 1 

(it’s the worst case) and obtain other costs in terms of 𝑐01 : 𝑐10 = 0.25 𝑐01; 𝑐00 =
0 𝑐01; 𝑐11 = 0.5 𝑐01. 

 

Step 6: The temporal Bayes risk, denoted by Ψtemporal(𝜌(𝑡);  𝑡), as a function of the 

coefficient of variation 𝜌(𝑡) ∈ [0,1] is obtained as: 

 

Ψtemporal(𝜌(𝑡);  𝑡) = ∫ 𝑓Θ(𝑡)(𝜗)𝐶(𝜗, 𝜌(𝑡); 𝑡) 𝑑𝜗
ΩΘ(𝑡)

 
(5) 

 

Finally, the optimal coefficient of variation at time 𝑡 is obtained as: 

 

𝜌𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝑡) = argmax
𝜌(𝑡)

Ψtemporal(𝜌(𝑡);  𝑡) (6) 

 

At time 𝑡1̅ , 𝜌𝑜𝑝𝑡𝑖𝑚𝑎𝑙 (𝑡) < 𝜌𝑝𝑟𝑖𝑜𝑟(𝑡)  and that is when additional information is 

required. The Fig. 3 illustrates the optimal coefficient of variation 𝜌𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝑡1̅) =

44% for stage 1 design to be installed at time 𝑡1̅ = 14 months. An interpretation of 

this is that we don’t need additional information about the structural state for up to 14 

months since the risk of catastrophic incidence is minimal. 

 

 
Figure 3. Prior vs. optimal coefficient of variation plot 

 



Once we know the time 𝑡1̅, we obtain the spatial placement of the first sensor design 

consisting of 1 sensor that provides just the right amount of additional information.  

Let 𝑒[𝑡𝑖̅]  denote an instance of the 𝑖 − th stage sensor design consisting of 

𝑁sg(𝑒[𝑡𝑖̅])  strain gauges with measurements 𝑥𝑒[𝑡̅𝑖] ∈ 𝛺𝑋𝑒[𝑡̅𝑖](𝑡̅𝑖)  such that 𝑡 ∈

[𝑡𝑖̅−1, 𝑡𝑖̅). Let 𝜀𝑒[𝑡̅𝑖] ∈ Ω𝜁𝑒[𝑡̅𝑖](𝑡̅𝑖)  denote the noise vector. Using the acquired sensor 

data, the damage parameter can be probabilistically updated via Bayesian inference to 

obtain the posterior distribution of gap conditioned on acquired data 𝑥𝑒[𝑡̅𝑖](𝑡𝑖̅) , 

denoted by 𝑓Θ(𝑡̅𝑖)|𝑋𝑒[𝑡̅𝑖](𝑡̅𝑖)(𝜃(𝑡𝑖̅)|𝑥𝑒[𝑡̅𝑖](𝑡𝑖̅)). The optimal sensor design for the stage 

identified with time 𝑡𝑖̅ is obtained as: 

 

𝑒∗[𝑡𝑖̅] = argmax
𝑒[𝑡̅𝑖]

Ψspatial(𝑒[𝑡𝑖̅]; 𝑡𝑖̅) , where 

Ψspatial(𝑒[𝑡𝑖̅]; 𝑡𝑖̅) = 𝐸Θ(𝑡̅𝑖)𝐻(𝑡̅𝑖)𝜁𝑒[𝑡̅𝑖](𝑡̅𝑖)[ℒ(𝑒[𝑡𝑖̅]; 𝑡𝑖̅)] 

 

(7a) 

(7b) 

Here, Ψspatial(𝑒[𝑡𝑖̅]; 𝑡𝑖̅)  denotes the spatial Bayes risk which is defined as the 

expected value of the target risk ℒ(𝑒[𝑡𝑖̅]; 𝑡𝑖̅). For this paper, we use the target risk as 

the KL divergence defined as: 

 

ℒ(𝑒[𝑡𝑖̅]; 𝑡𝑖̅) = 𝐾𝐿 (𝑓Θ(𝑡̅𝑖)|𝑋𝑒[𝑡̅𝑖](𝑡̅𝑖)(𝜃(𝑡𝑖̅)|𝑥𝑒[𝑡̅𝑖](𝑡𝑖̅) ) | |𝑓Θ(𝑡̅𝑖)(𝜃(𝑡𝑖̅))) (8) 

 

The design 𝑒∗[𝑡1̅] obtained by using Bayesian optimization on Eq. (7a) is then used to 

obtain the updated posterior gap degradation model 𝑓Θ(𝑡)|𝑋𝑒[𝑡̅1](𝑡)(𝜃(𝑡)|𝑥𝑒[𝑡̅1](𝑡)) 

valid for 𝑡 > 𝑡1̅ (see the details of Bayesian optimization algorithm in Yang et al. [3]). 

The updated posterior gap degradation model can then be used to obtain the next stage 

𝑡2̅, which then can lead to the second stage optimal design 𝑒∗[𝑡2̅]. For the simulated 

example, 𝑡2̅ = 17 months with 𝜌𝑜𝑝𝑡𝑖𝑚𝑎𝑙 (𝑡2̅) = 34%. This process continues till an 

acceptable level of coefficient of variation is achieved and beyond which, the 

optimization effort ceases to yield value. Figure 4 illustrates the designs 𝑒∗[𝑡1̅] and 

𝑒∗[𝑡2̅]. 
 

 
 

Figure 4. Optimal stage 1 (left) and stage 2 (right) sensor designs with 1 and 2 sensors respectively. 

 



 

CONCLUSIONS 

 

This article concisely details the mathematical formulation for a dynamic sensor 

optimization framework that spans both the temporal as well as spatial dimensions. By 

considering the uncertainty in the damage parameter over time, we use pre-posterior 

information analysis to identify the optimal time instance for updating the sensor 

design, based on the need for additional information. We then install an additional 

sensor that yields an acceptable optimal coefficient of variation. The spatial 

arrangement of the sensors is designed to maximize the gain in information relative to 

the prior knowledge at that instance of time. By dynamically maximizing the Value of 

Information (defined as needed), our proposed optimization framework enables an 

SHM system with a higher risk-to-reward ratio. 
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