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ABSTRACT

Structural health monitoring (SHM) aims to assess damage intensity and provide
engineers with data to make informed maintenance and repair decisions. SHM
systems collect crucial information for evaluating a structure's current state, enabling
appropriate maintenance decisions and loss mitigation. Therefore, it is crucial to
acquire damage-sensitive data by using a well-designed SHM system that is optimal in
terms of expenses as well as functionality. In this research, we present an optimal
sensor placement framework that considers two stages of the structure’s lifespan: (1)
an early-stage pre-posterior design, and (2) a periodically updated sensor design in the
operational stage.

When the sensors are designed initially in the pre-posterior stage, there is no data
available to make informed design assumptions for designing the SHM system. As a
result, all the uncertainties and damage evolution models for the structure need to be
modeled probabilistically based on reasonable assumptions derived from historical
perspective and engineering judgment. The early-stage design of an SHM system
initiates the data acquisition and serves two primary purposes: (1) helps update the
current state of the structure, and (2) supports data-informed maintenance decisions.
As the structure degrades over time, despite periodic maintenance, it is bound to
approach the limiting or critical damage state. This warrants an even better inference
of damage state with the goal of avoiding the worst scenario of failure. In addition,
another reason to update the sensor design while in the operational stage is to optimize
the SHM system by making it more suitable to the current structural state and benefit
from the data acquired through the pre-posterior design. Periodically updating the
design yields the best risk to reward for an SHM system in terms of its expenses and
functionality. We demonstrate the application of the proposed framework on a real-
world complex miter gate structure.

"University of California San Diego, La Jolla, CA, 92093-0085, U.S.A.
2University of Michigan-Dearborn, Dearborn, MI, 48128, U.S.A.



INTRODUCTION

The objective of SHM is to evaluate the severity of damage and furnish engineers
with relevant information for making informed choices about maintenance and repairs.
An SHM system achieves this target by gathering critical data that helps to determine
the present condition of the structure (diagnostics) and probabilistically forecasting the
evolution of the damage state (prognostics). This not only enables engineers to make
appropriate maintenance decisions for the current diagnosed state but also to plan
future actions, ensuring the reliability and safety of the structure.

While the data obtained from an SHM system facilitates informed decision-
making and enhances our comprehension of the system, it is important to consider the
costs involved in designing, developing, installing, maintaining, and operating the
system. As such, the true potential of the SHM process can be unleashed by optimally
designing the SHM system that aims at maximizing the Value of Information (see
[1,2,3]) and would also be a crucial part of creating a digital twin for the lifecycle
management of the structure (see [4,5]).

In this paper, an extension to our previous efforts (see [6-7]), we focus on the
optimization effort that primarily targets the optimal “when” and “where” of data
acquisition that fuels the SHM engine. We propose doing this by making two
observations: (1) It is often observed that an SHM system is not necessary during the
early pristine phase a structure’s life cycle, when the risk of failure or catastrophic
damage is minimal. Therefore, during this phase, the SHM system can be a cost
liability rather than an asset. However, as the structure evolves, acquiring additional
information about the structural state becomes increasingly valuable for decision-
making. As the risk of failure increases, the need for more information about the
structural state also increases. Consequently, the quantity of information gathered is
directly related to the risk of an unwanted event occurring. Exploiting this relationship,
we propose an approach that determines when additional resources should be allocated
to gather more information, thereby optimizing the monitoring of the structure in the
time domain; (2) The spatial arrangement of sensors depends on the damage that
needs to be inferred. The proposed approach also obtains and updates the spatial
arrangement of sensors that maximizes the target objective function. As a result, our
proposed optimization framework covers both temporal and spatial dimensions.

In the following writeup, we motivate and demonstrate the proposed time-
dependent sensor optimization framework on a case study involving structural health
monitoring of a miter gate that is part of a lock system enabling navigation of inland
waterways. The inland waterways navigation infrastructure is operated and maintained
by the United States Army Corps of Engineers (USACE).

THE STRUCTURE, LOADING, AND DAMAGE EVOLUTION MODEL

Consider the Greenup miter gate shown in Fig. 1. Over its life cycle, the gate is
subjected to uncertain loading, denoted by the random vector H(t) with a realization
h(t) € 2y. The upstream and downstream water head is denoted by h,,,(t) and

haown (t), such that h(t) = {hy,(6), haown (t)}. The state of the miter gate is

assumed to be completely defined by the loss of boundary contact (or a “gap”)
between the gate and the concrete wall at the bottom of the gate. This is referred to as



a gap-length (a scalar state-parameter defined at time t), denoted by 6(t) € Qg (. At
0 = Opin = 0 inches (lower bound) the gate is pristine. Based on the suggestions
from USACE field engineers, the limit 6 = 6,,,, = 180 inches is assigned as the

upper bound of loss of boundary contact at which point the gate is considered to be
failed and nonoperational.
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Figure 1. Greenup miter gate (figure adopted from Chadha et al. [1])

To capture the prior understanding of how the damage might evolve
probabilistically, we utilize a piecewise multi-stage prior gap degradation model,
which is explained in Section 5.1 of Chadha et al. [1], illustrated in Fig. 2. The figure
also illustrates the mean gap curve and the standard deviation of gap over time,
denoted by ug ) and oy respectively. Another curve that is crucial to our proposed
dynamic sensor design framework is the Coefficient of Variation (COV) of prior
degradation model denoted by pprior (t) = 0g(t)/ 1) (Plotted in red with scale on
the right y-axis in Fig. 2).
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Figure 2. Probabilistic prior gap degradation model

Since sensor optimization over the lifecycle warrants sensor measurements for
different loading conditions at different instances of time and damage level, it is
necessary to simulate the ground truth. We do so by using a high-fidelity finite
element model or its digital surrogate (see [8]). Let the observed measurements for a
set of sensors at time t be denoted by x(t) € Q). We obtain x(t) by adding the
noise vector £(t) € Q¢ to the ground-truth value of sensor measurement obtained
using the finite element method (FEM) model g(6(t), h(t);t). That is,

x(t) = g(8(6), h(t);t) + () (1)

Bayesian inference can then be used to infer the posterior distribution of the gap value
(see Chadha et al. [1] and Ramancha at al. [9]) denoted by fo (ryx e (8 (O] x ().



THE OPTIMIZATION FRAMEWORK

The proposed sensor optimization framework spans temporal as well as spatial
dimensions. We first consider the temporal dimension. In the time domain, the
proposed sensor optimization occurs in stages. During the early stages of the
structure’s lifespan, there is no urgent need for additional information about its health.
As a result, the uncertainty in the damage parameter is acceptable up to a certain point
in time without any significant risk of unwanted events. We use the prior COV
Pprior(t) to quantify the uncertainty in the gap value since it’s a measure of the
standard deviation of gap relative to its mean. As time progresses, there comes a point
where additional information is necessary to gain a better understanding of the
structural health or to infer the posterior of the gap. We refer to this as the stage 1
design that occurs at time ;.

To obtain the time ; and the subsequent time for next stages, we perform a pre-
posterior optimization of a Bayes risk function Wemporal (0(t); t) defined to capture
the consequence of various levels of uncertainties p(t) € [0,1]. We delineate
sequential steps of reasoning to formulate Wyempora (p(t); t) as follows:

Step 1: For each time instance t, we consider the realizations of the prior distribution
of the gap value, denoted by fo)(6(t)), to be the possible true value. Then we
consider various levels of uncertainty quantified by coefficient of variation p(t) =

% € [0,1]. For each realization pair (H(t),p(t)) we assume a normal distribution

N(8(),a(t) = p(t)6(t)) to quantify distribution of the gap value with (t) as its
mean and coefficient of variation p(t). If the realization 8(t) is less than 8,,,,,, it
implies that the assumed true gap at time ¢t is safe (an event denoted by S), and if 6(t)
is greater than 6,,,,,, it denotes that the assumed true gap at time t is not safe (an event
denoted by F). That is,

8(t) < By = P(S) =1and P(F) =0 )
8(t) >0,,,, = P(S)=0and P(F) =1

Step 2: Let ¢(t) denote a realization of N(6(t), a(t)). If ¢(t) is greater than 6,4,

it then reflects the case of nonoperational limit state, represented by the event F. On
the other hand, if ¢(t) is less than 6,,,,, it then indicates the case of a safe structure,
represented by the event S.

Step 3: We now define the following conditional probabilities:

AR = p(ele) — o [ Bmax — 08 ©
P(S|F) = P(3]s) = q’( p(D6(0) >
S1) = p(ElS) = 1 — o [ Omax =0
P(F|F)=P(F|s) =1 CD( p(D)O(t) >



Step 5: For each realization 6(t), and the coefficient of variation p(t) € [0,1] at time
t, we define the expected risk/consequence C(8(t), p(t); t) as:

ce@),p);t) (4)
= ¢1oP(F|S). P(S) + cooP(S|S). P(S) + ¢, P(F|F). P(F)
+ co1 P(S|F). P(F)

Here, c;; is the nominal consequence cost of a decision by assuming that the structure
is in state i € {0,1} while its true state is j € {0,1}. Here, 0 denotes safe, while 1
denotes not safe (binary decision). Since these are nominal costs, we assume cy; = 1
(it’s the worst case) and obtain other costs in terms of cy,: ¢19 = 0.25 ¢p1; Coo =
0 cp1; 11 = 0.5 ¢ps.

Step 6: The temporal Bayes risk, denoted by Wiemporal (0(t); t), as a function of the
coefficient of variation p(t) € [0,1] is obtained as:

5
Premporal 00 O = | fo@)CE®, p(©);0) a9 ©)
Qo)
Finally, the optimal coefficient of variation at time ¢ is obtained as:
poptimal(t) = arg{gax Lptemporual(,o(t); t) (6)
p

At time t1, Poptimar(t) < Pprior(t) and that is when additional information is
required. The Fig. 3 illustrates the optimal coefficient of variation p,ytima;(t1) =

449, for stage 1 design to be installed at time t; = 14 months. An interpretation of
this is that we don’t need additional information about the structural state for up to 14
months since the risk of catastrophic incidence is minimal.
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Figure 3. Prior vs. optimal coefficient of variation plot



Once we know the time t;, we obtain the spatial placement of the first sensor design
consisting of 1 sensor that provides just the right amount of additional information.

Let e[t;] denote an instance of the i —th stage sensor design consisting of
Ngg(e[t;]) strain gauges with measurements x. e!)xe[fi]@ such that t €

[ti-1, t:). Let ez € Qge[fi](fi) denote the noise vector. Using the acquired sensor

data, the damage parameter can be probabilistically updated via Bayesian inference to
obtain the posterior distribution of gap conditioned on acquired data x.z,(t;)

denoted by fo(e,)ix, g, @ (6(t)|xeqz, (). The optimal sensor design for the stage

e[t;

identified with time t; is obtained as:

e’[t;] = argmax Wspatial (e[t;]; t;), where (72)
B e_[ti] o (7b)
Wopatiat(e[ti]; t) = E@(fi)H(fi)(e[fi](fi) [L(e[t;]; )]

Here, Wspaial (e[t;]; £;) denotes the spatial Bayes risk which is defined as the

expected value of the target risk L(e[t;]; ;). For this paper, we use the target risk as
the KL divergence defined as:

LCele): &) = KL (foreo 0 O [xeaa @) ||focn (6E))  ©

The design e*[t, ] obtained by using Bayesian optimization on Eq. (7a) is then used to
obtain the updated posterior gap degradation model fo(e)jx,z, () CIGIEZRIO)
valid for t > t, (see the details of Bayesian optimization algorithm in Yang et al. [3]).
The updated posterior gap degradation model can then be used to obtain the next stage
t,, which then can lead to the second stage optimal design e*[t,]. For the simulated
example, t, = 17 months With poy¢imar (t2) = 34%. This process continues till an
acceptable level of coefficient of variation is achieved and beyond which, the
optimization effort ceases to yield value. Figure 4 illustrates the designs e*[t,] and
e*[t,].

Stage 1: Optimal design e*[t; ] Stage 2: Optimal design e*[t,]

Figure 4. Optimal stage 1 (left) and stage 2 (right) sensor designs with 1 and 2 sensors respectively.



CONCLUSIONS

This article concisely details the mathematical formulation for a dynamic sensor
optimization framework that spans both the temporal as well as spatial dimensions. By
considering the uncertainty in the damage parameter over time, we use pre-posterior
information analysis to identify the optimal time instance for updating the sensor
design, based on the need for additional information. We then install an additional
sensor that yields an acceptable optimal coefficient of variation. The spatial
arrangement of the sensors is designed to maximize the gain in information relative to
the prior knowledge at that instance of time. By dynamically maximizing the Value of
Information (defined as needed), our proposed optimization framework enables an
SHM system with a higher risk-to-reward ratio.
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