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ABSTRACT 

 
Offshore wind turbines (OWTs) are critical in achieving the global goal of net 

zero greenhouse gas emissions. However, they face significant safety and reliability 
challenges due to harsh environmental conditions and complex evolution 
mechanisms of structural properties. To address these challenges, dynamic digital 
twin technology is proposed as a potential solution to accurately monitor structural 
performance and condition variations. It can contribute to real-time tracking of 
OWTs' performance, early detection of potential structural damages, and accurate 
estimation of remaining useful life. 

 
 

INTRODUCTION 

 
In recent years, offshore wind turbines (OWTs) have accounted for an increasing 

proportion in the total installed capacity of wind turbines due to the stability of 
offshore wind energy and the vast space available at sea [1]. The rapid development 
of OWTs also poses serious challenges [2]: the harsh environment in which OWT 
structures are located is subject to corrosive factors such as high salt level, high 
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temperature, and high humidity that affect durability; since they are located far from 
land, operation and maintenance requires regular maintenance vessels, resulting in 
high operation and maintenance costs. Therefore, effective structural identification 
approach is urgently needed.  

Digital twin technology is gaining more and more attention with the 
development of the Internet of Things, 5G, and Artificial Intelligence. It is a 
technology that sends real-time data from the sensors installed on a structure to an 
analysis center via a wireless network, and uses physics-based and data-driven 
methods to obtain real-time structural conditions, and to update and visualize the 
digital model of the structure, i.e., a "real-time mapping of the full life cycle of a 
physical entity in virtual space" [3]. Nevertheless, most existing studies focus on the 
implementation of BIM (Building Information Modelling), which cannot represent 
structural dynamic behaviors. Thus, this study proposes a dynamic digital twin 
approach to bridge this gap. 

The implementation of dynamic digital twins for OWTs requires reduced order 
models, to improve computational efficiency [4, 5]. The existing studies of reduced-
order models for OWTs mostly focus on substructures or only one form of damage 
to the turbine [6, 7]. Consequently, a simplified model that takes into account the 
overall dynamic characteristics of the OWT is needed. 

The support condition significantly affects the dynamic properties of OWTs, but 
it is constantly changing under dynamic loads such as wind and waves [8, 9], 
following complex evolution mechanism. Therefore, efficient model updating is 
essential to represent real-time support conditions towards dynamic digital twin.  

Compared to the traditional model updating methods which aim to provide 
frequency alignment between the numerical model and the physical structure, the 
dynamic digital twin should be able to achieve time domain alignment. In practice, 
loads strongly influence structural dynamic responses, while they are difficult to 
measure directly. Therefore, they need to be accurately identified and modelled [10, 
11]. Among numerous existing force identification algorithms [12], Gaussian process 
latent force model (GPLFM) [13] stands out as it can achieve excellent time domain 
alignment results and greatly reduce the drift of derived unknown force.  

This paper presents several key techniques for the construction of dynamic 
digital twin of monopile-supported OWTs, including simplified model construction, 
support condition identification, and load identification. The methodology is 
described in Section 2. The results obtained based on the proposed method are shown 
in Section 3. A summary and outlook are provided in Section 4.  

 

 

METHODOLOGY 

 

The process of establishing dynamic digital twin models for monopile-
supported OWTs is shown in Figure 1. Firstly, a high-precision numerical model is 
created for dynamic analysis. Then, model order reduction methods are developed to 



 

 

construct the simplified finite element (FE) model. A two-stage model updating 
technique is utilized to achieve dynamic digital twin for OWT. In the first stage, the 
artificial ecosystem-based optimization algorithm is adopted to accurately identify 
the support condition of OWTs based on the simplified FE model. In the second stage, 
a simplified OWT state-space model was obtained from the simplified FE model, and 
the GPLFM method was used for load identification. Based on the reconstructed load 
and simplified model, i.e., dynamic digital twin, the structural dynamic behaviors can 
be efficiently simulated. 

 

 

 

 

Figure 1. The proposed dynamic digital twin approach. 
 

 

 

Figure 2. The process of establishing the simplified FE model for monopile-supported OWTs  

(reproduced from [4]) 
 

 

The process of the simplified FE model construction is shown in Figure 2. Firstly, 
a full-order FE model (FOM) is established using such high-order elements as solid 
and shell elements, based on an actual OWT structure. Secondly, we decompose the 
full-order model into three sub-structures: 1) blade, 2) nacelle and hub, and 3) tower 
and monopile, which is consistent with the structural composition of an OWT. These 
three substructure models are then simplified by using two-node beam elements, 
which deliver the reduce-order models of substructures. They are individually 
calibrated through a frequency domain model updating process. Finally, we assemble 
the simplified substructure models to a reduced-order model (ROM). This model is 
further updated to ensure simulation accuracy, which delivers the OWT simplified 
FE model. The detailed steps for the establishment of the simplified OWT model can 



 

 

be found in article [4].   

Then, a time-domain model updating method is developed to identify the support 
condition of monopile-supported OWTs. The distributed spring-dashpots are used to 
simulate the interaction between the soil and monopoles, and their initial values are 
determined according to the p-y curves obtained from the API [14]. The parameters 
of the spring and dashpot are selected as the updating parameters. The extreme values 
of the time-domain response and their corresponding time are used to establish the 
objective function, which benefits the goal of time domain alignment. Artificial 
ecosystem-based optimization (AEO) is selected as optimization algorithm, for its 
superior performance in solving real-world engineering problems [15]. 

Finally, the GPLFM algorithm is used to estimate the unknown input force for 
monopile-supported OWT. Based on the state space equation transformation, the 
dynamics equation can be represented as a first-order differential equation and an 
observation equation: 
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where x is the vector composed of displacement and velocity, y is the observed value, 
and Ac, Bc, Gc, and Jc are the necessary matrices converted according to Eq. (1). The 
specific form can be seen in [16]. After representing the system in the form of state 
space equations, various force identification algorithms [12] can be used to estimate 
unknown input forces. 

The exponential covariance function (Eq. (3)) in the Matérn family is used and 
set to   = 0. The hyperparameter [ , ]l =  is used to construct the covariance 
function in the force Gaussian model, which can be determined based on a priori 
knowledge by expert knowledge. More derivations of the formulas and related 
covariance function selections can be found in article [16].  

 

 

RESULTS AND DISCUSSION  

 

Simplified Model Construction 

Numerical simulation was performed to demonstrate the accuracy of the simplified 
FE model. Table I shows the first 10 order modal frequencies of the full-order model 



 

 

(FOM) and the simplified model. It can be found that the average deviation between 
the two models is less than 10%. Therefore, the simplified FE model can accurately 
simulate the structural dynamic behaviors of monopile-supported OWTs. 
 

 

TABLE I. NATURAL FREQUENCIES OF FOM AND SIMPLIFIED MODEL. (REPRODUCED 
FROM [4]) 

Mode FOM Simplified model Relative deviation (%) 

1 0.170 0.174  2.429  

2 0.174 0.175  0.379  

3 0.511 0.524  2.636  

4 0.558 0.555  -0.613  

5 0.595 0.556  -6.629  

6 0.653 0.623  -4.617  

7 0.754 0.726  -3.666  

8 0.770 0.805  4.553  

9 1.047 1.151  9.936  

10 1.226 1.180  -3.720  

 

 

 

Support Condition Identification 

 

Three distributed spring-dashpot sets have been selected based on the 
preliminary comparative study. The actuator is adopted to apply dynamic load on the 
OWT test model, and the proposed model updating method is used to identify the 
changes in the support condition caused by the dynamic load. The identification 
results are shown in Table Ⅱ, we can observe: 1) the stiffness parameters increase and 
the damping parameters decrease, which is consistent with the change of the mode 
parameters; 2) the closer the mud line, the greater the change of the parameters, which 
is consistent with the actual situation where the top soil layer experience larger 
deformation and force. The results indicate that this method can identify the real-time 
support condition for monopile-supported OWTs.  

 

 

 

TABLE II. VARIATIONS OF UPDATED PARAMETERS. 

Position of spring-dashpot sets 
Model updating 1 Model updating 2 

S1 S2 Q1 S1 S2 Q1 

Z/6 0.686 0.781 0.560 4.360 4.715 0.375 

3Z/6 0.812 0.773 1.046 4.729 3.238 0.325 

5Z/6 1.007 1.143 1.127 1.420 2.206 0.711 



 

 

 

 

Figure 3. The external excitation and data collection location of the simplified model. 
 

 

Load Identification  

 

The simplified OWT model was selected for the load identification study in this 
section. The damping ratio is set to 0.03, the Rayleigh damping coefficient is 
calculated from the first two orders of frequency of the model, and the damping 
matrix is 0.0329 0.0274= +C M K . As shown in Figure 3, the external excitation is 
located at the top of the tower and the displacement acceleration data are recorded 
for the middle of the tower, the top of the tower, and the top of the blade.  

An impact excitation of magnitude 1×106 N was first applied on the top of the 
tower. The load was applied at t = 2.5 s; ramped up linearly from 0 to 1×106 in 0.5 s; 
peaked at t = 3 s; and then ramped down linearly from 1×106 to 0 in another 0.5 s. 
Only the acceleration in the middle of the tower was used as a known response to 
estimate the unknown impact load. Finally, the load was input into the system and 
the reconstructed responses can be obtained. The load identification and the time 
domain response reconstruction results, compared against the numerical simulation 
results, are shown in Figures 4 and 6, respectively. It can be seen that the performance 
of force identification and response reconstruction is very good, with a slight time 
lag. The reconstructed response was brought forward one time step and compared 
with the true value. All the normalized mean square errors (NMSE) were less than 
0.01%. 

Further, a random excitation between -3.5×105 N and 3.5×105 N was applied to 
the top of the tower. The force was estimated, and the response was reconstructed 
using the acceleration in the middle of the tower as the known response. The results 
are shown in Figures 5 and 7. Again, the fit is almost perfect except for a slight lag 
in the results for the force and response. Similarly, after one time step forward in the 
reconstruction response, the NMSE of all responses is less than 0.1%. 



 

 

 

 

 
 

 

 Figure 4. Estimated force of the tower. Figure 5. Estimated force of the tower  

 

 

Figure 6. The response of the reconstruction. (a), (b), and (c) represent the displacements located at 
the middle of the tower, the top of the tower, and the top of the blade, respectively. (d), (e), and (f) 
represent the acceleration at the middle of the tower, the top of the tower, and the top of the blade, 

respectively.  

 

 

 

Figure 7. The response of the reconstruction. The representation of (a)-(f) is consistent with Figure 6. 
 

 

CONCLUSION  

 

This paper presents an approach to the construction of dynamic digital twin for 
monopile-supported OWTs. A simplified FE model was developed, which can 
achieve similar modeling accuracy compared with the full-order FE model. The time-



 

 

domain model updating technique is used to identify support condition. The GPLFM 
method is used to reconstruct the loads on the structure. The approach achieved 
excellent time domain alignment on a numerical example, with less than 0.1% NMSE. 
This study may be an important step towards the construction of dynamic digital twin 
for monopile-supported OWTs, which offers a promising solution to the challenges 
of safe operation and maintenance of these structures and may ultimately enhance 
their economic and environmental sustainability.  
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