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ABSTRACT

The objective of this study is to develop a reliability assessment framework for the
maintenance optimization of offshore wind turbines (OWTs) using an uncertainty-aware
digital twin framework. OWTs are typically located far from the coastline to optimize
wind utilization efficiency and minimize disruption of human activities. However, the
greater distance between OWTs and the coast can increase maintenance costs due to
accessibility and exposure to harsh weather conditions. Effective planning is crucial in
managing these costs. Therefore, employing digital twin models for OWTs can provide
potential benefits. A digital twin framework creates a virtual replica of the turbine and
leverages multi-source data for real-time simulations, enabling assessment of the tur-
bine’s performance under various loading conditions, which can substantially enhance
the maintenance decision-making process. The proposed framework has two main con-
tributions: (1) uncertainty quantification in the long-term performance of OWTs at both
the component and system levels, and (2) digital twin decision support leveraging OWT
failure probabilities under various scenarios, which is used to provide maintenance rec-
ommendations aimed at optimizing system profitability and structural integrity. Addi-
tionally, the digital twin model provides clear and concise warnings regarding potential
OWI failures.

INTRODUCTION

OWTs are strategically placed at a considerable distance from the coastline to har-
ness the vast wind energy available in the ocean while minimizing interference with
human activities. Wind farms, typically composed of multiple turbines, are experienc-
ing significant growth. [1] However, the remote location of OWT poses a challenge in
terms of meintenance due to the limited accessibility, leading to increased costs. And
the maintenance of OWTs is expensive, accounting for up to 30% of the total opera-
tion cost. [2] Therefore, it is imperative to develop effective maintenance strategies and
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solutions to tackle the issue of soaring maintenance costs.

In conventional practice, maintenance strategies are categorized into two types: failure-
based maintenance (also known as condition-based maintenance) and proactive mainte-
nance. Condition-based maintenance is a reactive approach that involves performing
maintenance tasks only after detecting a failure. Although several studies have focused
on developing condition-based maintenance approaches, it has been demonstrated that
this method is impractical and inefficient due to recurrent downtimes, costly repairs,
prolonged waiting and repair times, and other associated factors [3-5]. Furthermore,
real-time monitoring of OWT may be hindered by inclement weather and challenging
environmental conditions.

Proactive maintenance can be further classified into two types: preventive mainte-
nance and predictive maintenance. Preventive maintenance is typically reliant on expert
experience and is scheduled based on the duration of operation or power generation.
Since the actual condition of the wind turbine or any other operational data is not taken
into account, it can be less efficient and more expensive. For instance, offshore weather
conditions can be severe, and adhering to a predetermined maintenance schedule can
be challenging. On the other hand, predictive maintenance leverages the advantages of
constantly calculating the Probability of Failure (PoF) at the component level, utilizing
information such as weather conditions and operational data. When the PoF exceeds a
predetermined threshold, predictive maintenance is initiated to restore the component to
its original condition. [3]]

Despite the development of numerous maintenance logistics approaches in recent
years, such as storing easily failed spare components on-site or in nearby locations,
maintenance vessels and crews still need to access the OWTs. Therefore, while these
solutions are beneficial, the current methods cannot effectively resolve the issue of high
maintenance costs. Also, it is not feasible to have the maintenance team always avail-
able to address high PoF or non-critical component failures. Furthermore, the timing
of maintenance should be carefully considered, taking into account unfavorable weather
conditions, such as high wave height, that may increase the potential risk of transporting
components.

This paper introduces an approach that concurrently displays both the reliability of
individual components and the overall system within the digital twin model. This sub-
stantial enhancement aids in maintenance decision-making by incorporating critical fac-
tors such as weather conditions and power generation. By encapsulating all pertinent
information within a digital twin model, the process of scheduling maintenance teams
will be expedited, thereby augmenting the potential benefits of a wind farm.

SYSTEM AND COMPONENT RELIABILITY OF OWTS

The PoF for a wind turbine system is directly linked to the PoF of its individual
components. To investigate, Kang et al. [6]] conducted both qualitative and quantitative
Fault Tree Analysis on OWTs, which consist of several assemblies that form a parallel
system. These assemblies include support structures, pitch and hydraulic systems, gear-
boxes, generators, speed trains, electronic components, blades system, and yaw systems.
Li and Soares [7] also examined the reliability of OWT by assessing its configuration,
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Figure 1. OWTs configuration with five subsystems depicted in blue. The subsystems are
further divided into components, each with its own unique failure types. For this study,
Tower, Blade, and Mooring Subsystems were Selected, along with their corresponding
primary failure modes.

whereby each component in a configuration has its own sub-malfunction types, either
parallel or series, which can result in system failure. However, current literature on
OWT reliability assessment relies on historical data, which is unsuitable for real-time
maintenance decision-making. In light of this, a method based on a high-fidelity OWT
model is proposed to determine both system reliability and component reliability. The
OWT configuration is divided into five parts: support structure, pitch system, gearbox,
generator, and auxiliary system, each of which has its own subsystems, as illustrated
in Figure [I] Through the identification of failure types for each subsystem, the risk as-
sessment can be conducted for both individual subsystems and the system as a whole,
utilizing a combination of parallel or series system analysis. The primary step in this
process involves the construction of a limit state function for each failure type. This
approach facilitates the computation of the PoF for every component within an OWT
and the system at large, which can subsequently be utilized for predictive maintenance
purposes.

This research identifies three main failure types that correspond to the three main
components of an OWT: local buckling of the tower (Equation [I)), bending stress on the
blade root (Equation [3]), and breaking of the mooring line (Equation ). [8[9] Whenever
a new limit state function is established for a specific failure type, it can be incorporated
into the system failure function. Moreover, the effects of component deterioration have
been considered, assuming linear deterioration for each component, which is reset to its
original state after every maintenance session.
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In the presented equations, 7y, 2, and <3 are utilized as deterioration factors to ac-
count for the weakening of the structure over time. Assuming linear deterioration, the
strength of the structure will decrease to 70% after one year of operation. This is repre-
sented mathematically as ; = —0.0000133x + 1, where x represents the time interval
in 10-minute increments. The necessary data derived from the high-fidelity model of
OWTs comprises the bending moment at the base of the tower, denoted by My, the
bending moment at the blade root, denoted by Mz and the force exerted on the mooring
line, denoted by T),. These quantities are to be determined using the maximum values
obtained during a one-hour modeling exercise, as recommended by [9]]. M., is the crit-
ical bending moment capacity as shown in Equation 2l X, ,; and X ., are going to
quantify the uncertainties for scale effect between test specimens and full-scale struc-
tures. D is the diameter of the tower while ¢ is the thickness. F), is the yield strength of
the material. X, accounts for the natural modeling error of the test result. I, ., R}, and
oy, ¢ are respectively the second moment of the blade root section, the radius of blade
root section, and blade tensile strength. () is the breaking load capacity. Finally, as the
OWT system consists of the blade, tower, and mooring line in a parallel configuration,
the PoF of the OWT system can be expressed in Equation [5} p; represents the PoF of
the ¢ -th (g;) component (blade, tower, or mooring line) in the system, and n is the total
number of components in the system. The distributions of the parameters used in the

reliability analysis are defined in Table

DIGITAL TWIN FOR THE MAINTENANCE OPTIMIZATION OF A WIND FARM

OpenFAST, a high-fidelity wind turbine simulation tool developed by the National
Renewable Energy Laboratory (NREL), is utilized to compute the response of the OWT
under varying weather scenarios. OpenFAST is used to generate the time history of the
structural response by inputting the mean wind speed and mean wave height. However,
to ensure accurate results and account for transient effects during startup and initial op-
eration, a burn-in period was necessary. In this study, a one-hour burn-in period was
chosen, and the peak value was taken after a 30-second burn-in period, as recommended
by literature [9]. With a single run of OpenFAST, a response of the OWT can be ac-
cessed, including the peak moments and forces necessary for calculating the PoF, as
well as power generation in the period of time.

By executing OpenFAST multiple times, Monte Carlo Simulation can be utilized
to determine the PoF for the subsystem using Equations and for the systems
using Equation [5| However, the Monte Carlo Simulation approach can be computation-
ally expensive and inefficient, as it requires a large number of OpenFAST simulations
to be executed. An alternative approach is to use a surrogate model, which can reduce



TABLE I. PARAMETERS USED IN THE RELIABILITY ANALYSIS [8,9]

Parameter Mean, covariance Distribution
Young’s Modulus, E (GPa) 210, 0.02 Lognormal
Yield Strength, £ (MPa) 240, 0.05 Lognormal
Scale effect for yield strength, X, 4 1.0, 0.05 Lognormal
Scale effect for Young’s Modulus, X g 1.0, 0.02 Lognormal
Modelling error for the adopted numerical 1.0, 0.1 Lognormal
model, X,

Modeling error associated with the loading 1.0, 0.22 Lognormal
for tower and blade, Y7,1,Y70

Modeling error associated with the material 1.0, 0.03 Lognormal
properties for tower and blade, Yj;1,Yas0

Blade tensile strength, oy, f (M Pa) 518, 0.03 Normal
Modelling error associate with the loading for 1.0, 0.17 Lognormal
mooring lines, Y73

Modeling error associated with the material 1.0, 0.03 Lognormal
properties for mooring lines, Y3

Breaking load capacity, Q (kNN) 7334, 0.05 Lognormal
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Figure 2. The framework of the digital twin aided maintenance optimization model.

the required number of samples and increase computational efficiency. [[10] Reliabil-
ity assessment by Monte Carlo Simulation or surrogate models can then be passed to
visualization of digital twin models as it is shown in the framework in Figure 2]

Unreal Engine 5, a real-time 3D creation tool, is utilized to construct the digital
twin display. The Message Queue Telemetry Transport (MQTT) protocol is employed
to facilitate seamless data transmission between OpenFAST, reliability assessment, and
Unreal Engine. MQTT protocol facilitates the rapid exchange of information between



models. By visualizing the PoF for subsystems and systems of the OWT, critical com-
ponents, and system reliability can be easily identified. Additionally, the digital twin
display provides information on current weather conditions, power generation forecasts
for future periods, past earnings, and maintenance costs in the user interface. The inclu-
sion of current labor market information in the digital twin is also feasible. These data
points can be leveraged to aid expert decision-making in planning future maintenance
schedules and providing automatic warnings.

CASE STUDY FOR THE DIGITAL TWIN MODEL

In the case study, the modeling of the wind farm consists of 5 wind turbines, and
the type is the SMW OC4 DeepCwind semi-submersible wind turbine [11]], which is
included in the OpenFAST test archive and detailed parameters presented in Table
The wind speed in the vertical directions is calculated using the logarithm law [[12].

Historical data obtained from the National Data Buoy Center (NDBC) is utilized for
predicting the mean wave height and mean wind speed in the wind farm area for a future
period. However, this study did not involve making predictions based on historical data,
but rather assumed acquired data as new for the purposes of analysis. This approach
does not impact the validity of future studies that aim to make predictions based on his-
torical data, as several studies have explored the use of historical data for wind and wave
prediction [14,/15]]. The dataset includes the mean wind speed (represented every 10 min-
utes) and the mean significant wave height (represented every hour) recorded at 26.055N
93.646W, corresponding to station 42002 from NDBC. It is assumed that each data point
represents the mean wind speed and significant wave height for a ten-minute interval and
a one-hour interval, respectively. By feeding data into the OpenFAST, the response of
OWTs can be obtained, such as moments and forces, and power generation prediction
results. As shown in Figure[3] OpenFAST simulation results for the tension in the moor-
ing lines have been shown under mean wind speed of 15 m/s and mean wave height of 5
meters, as well as the PoF analysis for the mooring line tension of a single OWT within
250 days period. Notably, the maximum PoF values for the tower base flapwise moment
and the blade root flapwise moment are both 0, while for the mooring lines tension, it is
found to be 0.000150. PoF escalates over time due to the gradual process of deteriora-

TABLE II. PROPERTIES OF THE NREL SMW OC4 WIND TURBINE [9,/13]

Rated power (kW) 5000

Cut-in, cut-out speed (m/s) 3 and 25
Rotor diameter (1m) 126

Hub height (m) 90

The radius of blade root section, R, ,.(m) 1.77

Second moment of blade root, Ibﬁ,«(m‘l) 0.566

Base section diameter and thickness (m) 126 and 61.5
Nominal diameter of mooring lines, d (mm) 77.9
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Figure 3. The OpenFAST simulation results for the tension (k/V) in the mooring lines and

the PoF analysis for the mooring line tension of a single OWT within 250 days period.
The inset plot displays the PoF during a partial day between day 238 and day 239.

tion, while it remains low owing to the absence of severe weather conditions. Moments
and forces will go into reliability assessment to calculate PoF using Equation 1-5, which
will be transmitted to the digital twin model. By explicitly defining the threshold for
the warning limit, the model can automatically assess the reliability of the component
and issue an alert regarding the health status of the OWTs. Knowing the potential power
generation, the digital twin model currently utilizes a fixed price for the power market,
rather than incorporating imported market pricing data. However, in future work, it may
be beneficial to incorporate labor market pricing data for repair work and component
pricing, in addition to potential revenue data for the power market. Consequently, main-
tenance decisions can be readily made by subject matter experts armed with all necessary
information, thus contributing to the cost optimization of maintenance.

CONCLUSIONS

This study introduces a novel approach based on the digital twin model for the re-
liability assessment of OWTs. The digital twin model offers decision-makers a com-
prehensive and timely risk-based decision-support tool with visualization of the critical
information required to make informed decisions regarding OWTs maintenance. The
approach integrates a wide range of data sources, including component failures, weather
conditions, and market factors, which are displayed in a digital twin model.

The digital twin framework provides decision support based on predictive mainte-
nance by providing real-time monitoring of the condition of OWTs in a wind farm,
enabling preparation for potential events and ensuring that necessary resources are avail-
able. Additionally, the model incorporates data on harsh weather conditions and provides



warnings directly on the screen, allowing stakeholders to make timely decisions regard-
ing OWTs shutdowns in the event of any impairment. Moreover, the model can utilize
advanced on-site sensors to import additional information, further enhancing OWTSs’
condition monitoring. Finally, the approach supports informed maintenance decisions
that consider not only the conditions of OWTs but also market and weather conditions,
thereby enabling profitable decision-making. It can also aid in assessing the profitability
of a new wind farm using historical weather data.
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