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ABSTRACT

Vision-based displacement measurement is promising for infrastructure
applications because of its ability to cover traditionally hard-to-access regions, as well
as its ability to enable simultaneous dense displacement measurements over large areas
within a short time period. This paper proposes, demonstrates, and evaluates a vision-
based strategy to estimate the displacement of large civil infrastructure under in-service
loading. The first step of the strategy consists of conducting a photographic survey of
the structure during a typical loading event. Next, a Kanade-Lucas-Tomasi (KLT)
feature tracker is employed on photos to track displacements at various locations on the
structure. Finally, computer vision-based techniques including camera motion
compensation with 2D geometric transformations, correction for lens distortion, and
localized histogram equalization of image intensity are implemented to tackle the
inherent challenges with field-collected image data. This paper demonstrates the
proposed vision-based strategy on a large, steel miter gate at the lock and dam on the
Columbia River at The Dalles, OR. To evaluate the accuracy of the displacement
estimation strategy, virtual images of a 3D photorealistic model of the gate with known
displacements from a finite element analysis (FEA) model were considered. These
displacements were then compared to the FEA displacements projected from the 3D
model onto the image plane. The differences between these displacements, which
ideally should be zero, directly indicate the error of the proposed strategy. Subsequently,
displacements estimated from the field images are compared to those predicted by the
FEA. Future work will investigate using these differences to generate high-density data
for use in Bayesian model updating. The proposed approach is readily adapted for
understanding the deformation of other large-scale civil infrastructure systems under in-
service loading and preparing for a FEA model-updating schema.
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INTRODUCTION

Periodic condition assessment of large-scale civil infrastructure, such as miter gates,
IS necessary considering its crucial role in supporting a nation’s transportation system
and economy. Moreover, civil infrastructure in the US scores a C- according to the
American Society of Civil Engineers (2021) [1], adding to the urgency for operators to
understand the condition of their assets. Operators intermittently send inspectors to do
hands-on inspections, but costs limit the frequency of these visits. Structural health
monitoring offers an alternative avenue for periodic condition assessment, using
measurements of physical quantities, rather than requiring personnel to gather
information about the current condition of the structure manually. However,
conventional displacement sensors, such as linear variable differential transformers
(LVDTs), require a stationary reference point for installation and direct access to
monitoring structures that can be challenging in the field [2]. Additionally, these sensors
require reliable power, cabling, and protection against the elements, and can be costly
to install, resulting in an intractable implementation on large-scale civil infrastructure.

Computer vision techniques offer promising solutions to civil infrastructure
displacement measurement [3] due to their non-contact nature, as well as the ability to
cover large areas and achieve dense measurements. With rapid advances in digital
photography, computing power, as well as image post-processing algorithms, vision-
based displacement measurement strategies have been extensively investigated by many
researchers, especially in the past decade. For example, Ye et al. [4] proposed a pattern
matching algorithm for multi-point structural displacement measurement and conducted
a series of laboratory experiments for performance evaluation. Narazaki et al. [5]
evaluated the expected performance of different measurement plans, including camera
placement and post-processing algorithms, by simulating the vision-based displacement
and strain measurements of miter gates in a photo-realistic environment. The same
research group further improved the accuracy of displacement measurement by
developing a model-informed approach in a synthetic environment, and then validated
the approach’s efficacy using laboratory data from a 3D steel truss [6]. However,
applying laboratory-developed methodologies to structures in the field is more
challenging, due to issues such as lighting changes, moving shadows, wind-induced
camera motion, etc., which can negatively impact performance.

In this study, a robust and practical vision-based displacement measurement
framework has been developed and is then demonstrated through a case study of an in-
service miter gate at a lock and dam on the Columbia River located at The Dalles,
Oregon. The displacement estimation was based on applying the classical Kanade-
Lucas-Tomasi (KLT) feature tracker [7, 8, 9] to a series of photos of the structure. First,
the accuracy of the framework is evaluated using virtual images of a 3D photorealistic
model of the gate with known displacements. Subsequently, photographic survey of the
in-service gate was conducted during a typical loading event. Various field-related
issues, such as wind-induced camera motion, lens distortion, lighting changes etc., were
addressed using computer vision techniques. The displacements measured using the
proposed vision-based approach were then compared with the FEA displacements,
providing necessary information to implement a model updating approach for more
detailed representation of the current structure. This vision-based displacement
measurement framework can be readily applied to other target structures with only
minor adjustments, providing valuable information for infrastructure owners/managers.
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Figure 1. Vision based structural displacement measurement framework.

METHODOLOGY

The vision-based framework for structural displacement measurement developed in this
research is summarized in Figure 1. Red ovals indicate user input, gray rectangles
indicate actions, and green diamonds represent branches. Red ovals in gray rectangles
mean that the user could manually input this information, or it could be automatically
extracted from an excel spreadsheet of nodal locations in image coordinates.

First, photographic surveys of The Dalles Lock and Dam were conducted to better
understand how the lock’s miter gate deforms during operation. Several sets of photos
framing various locations on the miter gate were taken during a typical quasi-static
loading event. A Nikon Z5 camera was used to capture high-resolution (24.2
megapixels) images every five seconds over the course of a 15-to-20-minute loading
event. The camera tripods were weighed down with buckets of rocks and put inside a
hunting tent to reduce wind sway effects, and images were taken using the camera’s
built-in digital timer to minimize physical camera contact during the event.

After the images were captured, pixel displacements of critical points on the miter
gate were measured by applying the classical Kanade-Lucas-Tomasi (KLT) feature
tracker to the series of photos. To significantly reduce computational cost, only points
in regions of interest (ROIs), rather than the entire image, were tracked. Two types of
ROIs were considered, termed static ROIs and non-static ROIs. Static ROIs are regions
in the image sets that are known to have negligible or incredibly small displacements,
such as the concrete monoliths that support the miter gate. These regions are used later
to calculate a 2D geometric transformation to correct for camera motion. Non-static
ROIs are target regions on the miter gate where displacements are informative of
structural behavior. Different variables, including the number of static and non-static
ROls, feature selection method, and number of tracked points in each ROI, can be set
to optimize the tracking results for each unique image set.

Several computer vision techniques were applied to the images to track the pixels
more easily and more accurately. The images were first corrected for camera lens
distortion effect by using the camera lens distortion parameters for our specific cameras.
These were obtained by taking photos of a checkerboard pattern at different angles and



using the Camera Calibrator App in Matlab. Next, static and non-static ROIs were
selected from the undistorted images. These can be chosen by the user or automatically
generated from a spreadsheet of node coordinates and the camera’s location in the global
coordinate system. Then for each ROI, localized histogram equalization was
implemented to eliminate shadows and sudden changes in lighting, allowing features to
be more distinct and therefore easier to track. Finally, feature points were detected for
each ROI using a Harris corner detector. Since the static ROI’s are so large, a primarily
uniform spectrum of features was chosen over the area. For the smaller non-static ROI’s,
the strongest features were chosen to get the most accurate tracking results.

After the initial image processing, the feature tracking script iterated over each
image in the set and calculated the pixel displacement of the feature points using the
Kanade-Lucas-Tomasi (KLT) feature tracker, comparing each image to the first
reference image. In computer vision, the Lucas—Kanade (LK) method [7] is a widely
used differential method for optical flow estimation developed by Bruce D. Lucas and
Takeo Kanade. Optical flow is the apparent motion of brightness patterns in an image,
that ideally matches the motion field. The LK method assumes that the optical flow is
essentially constant in a local neighborhood of the pixels under consideration and solves
the basic optical flow equations for all the pixels in that neighborhood by the least
squares’ criterion. By combining information from several nearby pixels, the LK
method can often resolve the inherent ambiguity of the optical flow equation. It is also
less sensitive to image noise than pointwise methods. The Kanade—Lucas—Tomasi
(KLT) feature tracker [8] [9] combines feature detectors with the LK method, using an
interest point/feature detector such as a Harris Corner Detector [10], to detect good
features to track first, and then it does the tracking using the LK method.

Once the KLT feature tracking was complete, a 2D geometric transformation was
calculated using the tracked points in static ROIs in the same image to compensate for
wind-induced camera vibration. Ideally, the camera should be fixed during the image
collection process; therefore, the position of static regions should remain unchanged in
the different images. However, due to wind sway, static regions in the image sets are
not completely overlapped in different frames. Therefore, the measured displacement
of the miter gate is not only actual gate movements but also includes camera motion-
induced displacement as well. To remove the camera motion displacement, some typical
methods such as Direct Linear Transformation (DLT) and the M-estimator sample
consensus (MSAC) algorithm were used [11, 12].

Subsequently, the pixel displacements were stored in an array. To help reduce noise
and outliers, a moving average over time was deployed by taking the average of the
current frame and the six frames before and after it for each feature point, where the
time difference between each frame was 0.5 seconds. Additionally, an average over the
feature points within the same ROI was taken to produce one displacement per ROI,
where outliers more than one standard deviation away from the mean were thrown out.
Also, ROI displacements with a standard deviation more than 0.5 pixels were thrown
out to get rid of ROI displacements with bad tracking.

Finally, a FEA model of the gate was created in Abaqus. The displacements at
certain times of the fill event were recorded from the FEA in 3D world coordinates. To
compare the FEA displacements to the field displacements, both displacements were
converted to pixel units in the image coordinate system. Because only a single-lens
camera was used to capture images rather than stereo cameras, projecting 2D tracking
results into 3D world coordinate system with physically meaningful scale (e.g., meters)



is difficult without additional information. Therefore, a feasible strategy is to project the
3D physical displacements from FEA onto the 2D image plane in pixel coordinates. To
achieve this 3D to 2D projection, the Camera Calibration Matlab GUI developed in [6]
was used to obtain the projection matrix. Correspondence point pairs from the 3D FEA
model and the 2D image were selected, and parameters such as focal length, image
resolution, and sensor size were used as known constraints. Then, a nonlinear least
square regression problem was solved to give the camera location and orientation in the
3D world coordinate system, thus a 3D to 2D projection matrix was further obtained.
More details of this camera calibration method can be seen in [6]. For future work, the
difference between the FEA displacements and the field displacements will be used for
model updating to get an accurate model of the current condition of the structure. A
model-updating routine will be implemented by changing the boundary conditions of
the Abaqus model at the miter and quoin, calculating the new displacements, and then
repeating until the displacements match.

To verify the accuracy of the developed vision-based structural displacement
measurement algorithm, a physics-based graphics model (PBGM) of the Dalles miter
gate was built in a synthetic environment. A PBGM is a photorealistic, graphical model
that is coupled with a physics-based engineering model such as a FEA. For this study,
the PBGM was built in Blender using a similar procedure as was developed in [5]. The
3D physical displacement from the FEA was applied to deform the graphical model.
Then after setting camera parameters to be the same as the field data cameras and
adjusting the location and orientation of the camera according to the camera calibration
result, images were rendered from both the undeformed and the deformed PBGM.
Figure 2 shows the image rendered from the undeformed PBGM. Then, the developed
vision-based structural displacement measurement algorithm was applied to track the
pixel displacement between the two rendered images from the undeformed and
deformed model, and the tracked displacement was compared with the pixel
displacement from the FEA. The difference indicates the accuracy of the developed
displacement estimation algorithm.

RESULTS

In this section, results of one of the image sets of a typical loading event are shown as
an example. Figure 3 shows the static and non-static ROIs as well as the detected feature
points in those ROIs indicated as red crosses. The non-static ROIs were automatically

Figure 2. Undeformed PBGM miter gate Figure 3. Chosen static and non-static ROI’s.



chosen to match corresponding nodes in the FEA. Points in the four static ROls were
used to calculate the 2D geometric transformation used to compensate for the camera
motion-induced pixel displacement. After compensation, the field image pixel
displacement for points in the static ROIs are smaller than 0.17 px for the image
coordinate x-direction and 0.56 px for the image coordinate y-direction, which is
extremely small considering the images are over 6,000 pixels wide and 4,000 pixels tall.

For future model updating purposes and to evaluate the currently proposed
algorithm, three cases were compared: Case 1: “FEA”, which is the 3D physical
displacement calculated from the FEA and then projected onto the 2D image plane.
Case 2: “PBGM?”, which is the 2D tracked displacement between the rendered images
from the undeformed model and the model deformed under full hydraulic loading. Case
3: “Field”, which is the 2D tracked displacement between the first and the last frame of
the image set using the proposed displacement measurement algorithm. All cases show
the displacement as the movement of the gate between empty and full hydraulic loading.
Figures 4, 5, and 6 show the magnitude of the displacements in pixels at different points
on the gate as heat maps for all three cases respectively. The colors are on a sliding
scale, so that blue represents the minimum for that set and red represents the maximum,
while black represents points that had poor tracking. Heat maps give context for the
displacements to better visualize the data. For all three, the displacements near the quoin
are the smallest with increasing displacement from the quoin towards the miter, and
downwards along the height of the gate. For the field data, there seem to be a few
outliers, which could be due to tracking errors from real environmental conditions such
as water leaking from the quoin and miter.

Figure 6. Field displacement heat map.
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Figure 7. Difference between PBGM and FEA displacement magnitudes.
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Figure 8. Difference between Field and FEA displacement magnitudes.

However, the differences between cases can be difficult to see in Figures 4, 5, and
6. Figures 7 and 8 show the differences in displacements. The differences between
PBGM and FEA seem to be very low with one lone red outlier. This indicates that the
displacement measurement strategy has low error and is relatively accurate. The
differences between Field and FEA show higher differences downwards along the
height of the gate, which could mean those corresponding boundary conditions need to
be updated in a model-updating schema.

CONCLUSION

In this paper, a vision-based displacement measurement strategy was developed and
applied to a miter gate located at The Dalles, Oregon. A Kanade-Lucas-Tomasi (KLT)
feature tracker was used to track displacements at different locations of the miter gate
from a series of photos taken during a typical loading event. Computer vision techniques
such as camera motion compensation with 2D geometric transformations, camera lens



distortion removal, and localized histogram equalization of intensity were implemented
to tackle inherent issues with field-collected image data. The accuracy of the developed
displacement measurement algorithm was evaluated with the help of a photo-realistic,
3D synthetic model of the gate. For future work, the difference between the FEA
displacements and the field displacements will be used for model updating to get an
accurate model of the current condition of the structure. A model-updating schema will
be implemented by changing the boundary conditions of the Abaqus model at the miter
and quoin, calculating the new displacements, and then repeating until the
displacements match. With only minor adaptive changes, this strategy can also be
readily applied to other large scale target structures, thus attracting interests of
owners/managers of infrastructure.
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