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ABSTRACT 

Vision-based displacement measurement is promising for infrastructure 
applications because of its ability to cover traditionally hard-to-access regions, as well 
as its ability to enable simultaneous dense displacement measurements over large areas 
within a short time period. This paper proposes, demonstrates, and evaluates a vision- 
based strategy to estimate the displacement of large civil infrastructure under in-service 
loading. The first step of the strategy consists of conducting a photographic survey of 
the structure during a typical loading event. Next, a Kanade-Lucas-Tomasi (KLT) 
feature tracker is employed on photos to track displacements at various locations on the 
structure. Finally, computer vision-based techniques including camera motion 
compensation with 2D geometric transformations, correction for lens distortion, and 
localized histogram equalization of image intensity are implemented to tackle the 
inherent challenges with field-collected image data. This paper demonstrates the 
proposed vision-based strategy on a large, steel miter gate at the lock and dam on the 
Columbia River at The Dalles, OR. To evaluate the accuracy of the displacement 
estimation strategy, virtual images of a 3D photorealistic model of the gate with known 
displacements from a finite element analysis (FEA) model were considered. These 
displacements were then compared to the FEA displacements projected from the 3D 
model onto the image plane. The differences between these displacements, which 
ideally should be zero, directly indicate the error of the proposed strategy. Subsequently, 
displacements estimated from the field images are compared to those predicted by the 
FEA. Future work will investigate using these differences to generate high-density data 
for use in Bayesian model updating. The proposed approach is readily adapted for 
understanding the deformation of other large-scale civil infrastructure systems under in- 
service loading and preparing for a FEA model-updating schema. 
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INTRODUCTION 

 

Periodic condition assessment of large-scale civil infrastructure, such as miter gates, 

is necessary considering its crucial role in supporting a nation’s transportation system 

and economy. Moreover, civil infrastructure in the US scores a C- according to the 

American Society of Civil Engineers (2021) [1], adding to the urgency for operators to 

understand the condition of their assets. Operators intermittently send inspectors to do 

hands-on inspections, but costs limit the frequency of these visits. Structural health 

monitoring offers an alternative avenue for periodic condition assessment, using 

measurements of physical quantities, rather than requiring personnel to gather 

information about the current condition of the structure manually. However, 

conventional displacement sensors, such as linear variable differential transformers 

(LVDTs), require a stationary reference point for installation and direct access to 

monitoring structures that can be challenging in the field [2]. Additionally, these sensors 

require reliable power, cabling, and protection against the elements, and can be costly 

to install, resulting in an intractable implementation on large-scale civil infrastructure. 

Computer vision techniques offer promising solutions to civil infrastructure 

displacement measurement [3] due to their non-contact nature, as well as the ability to 

cover large areas and achieve dense measurements. With rapid advances in digital 

photography, computing power, as well as image post-processing algorithms, vision-

based displacement measurement strategies have been extensively investigated by many 

researchers, especially in the past decade. For example, Ye et al. [4] proposed a pattern 

matching algorithm for multi-point structural displacement measurement and conducted 

a series of laboratory experiments for performance evaluation. Narazaki et al. [5] 

evaluated the expected performance of different measurement plans, including camera 

placement and post-processing algorithms, by simulating the vision-based displacement 

and strain measurements of miter gates in a photo-realistic environment. The same 

research group further improved the accuracy of displacement measurement by 

developing a model-informed approach in a synthetic environment, and then validated 

the approach’s efficacy using laboratory data from a 3D steel truss [6]. However, 

applying laboratory-developed methodologies to structures in the field is more 

challenging, due to issues such as lighting changes, moving shadows, wind-induced 

camera motion, etc., which can negatively impact performance. 

In this study, a robust and practical vision-based displacement measurement 

framework has been developed and is then demonstrated through a case study of an in-

service miter gate at a lock and dam on the Columbia River located at The Dalles, 

Oregon. The displacement estimation was based on applying the classical Kanade-

Lucas-Tomasi (KLT) feature tracker [7, 8, 9] to a series of photos of the structure. First, 

the accuracy of the framework is evaluated using virtual images of a 3D photorealistic 

model of the gate with known displacements. Subsequently, photographic survey of the 

in-service gate was conducted during a typical loading event.  Various field-related 

issues, such as wind-induced camera motion, lens distortion, lighting changes etc., were 

addressed using computer vision techniques. The displacements measured using the 

proposed vision-based approach were then compared with the FEA displacements, 

providing necessary information to implement a model updating approach for more 

detailed representation of the current structure. This vision-based displacement 

measurement framework can be readily applied to other target structures with only 

minor adjustments, providing valuable information for infrastructure owners/managers. 



   

 

   

 

     
 

Figure 1. Vision based structural displacement measurement framework. 

 

 

METHODOLOGY 

 

The vision-based framework for structural displacement measurement developed in this 

research is summarized in Figure 1. Red ovals indicate user input, gray rectangles 

indicate actions, and green diamonds represent branches. Red ovals in gray rectangles 

mean that the user could manually input this information, or it could be automatically 

extracted from an excel spreadsheet of nodal locations in image coordinates. 

First, photographic surveys of The Dalles Lock and Dam were conducted to better 

understand how the lock’s miter gate deforms during operation. Several sets of photos 

framing various locations on the miter gate were taken during a typical quasi-static 

loading event. A Nikon Z5 camera was used to capture high-resolution (24.2 

megapixels) images every five seconds over the course of a 15-to-20-minute loading 

event. The camera tripods were weighed down with buckets of rocks and put inside a 

hunting tent to reduce wind sway effects, and images were taken using the camera’s 

built-in digital timer to minimize physical camera contact during the event. 

After the images were captured, pixel displacements of critical points on the miter 

gate were measured by applying the classical Kanade-Lucas-Tomasi (KLT) feature 

tracker to the series of photos. To significantly reduce computational cost, only points 

in regions of interest (ROIs), rather than the entire image, were tracked. Two types of 

ROIs were considered, termed static ROIs and non-static ROIs. Static ROIs are regions 

in the image sets that are known to have negligible or incredibly small displacements, 

such as the concrete monoliths that support the miter gate. These regions are used later 

to calculate a 2D geometric transformation to correct for camera motion. Non-static 

ROIs are target regions on the miter gate where displacements are informative of 

structural behavior. Different variables, including the number of static and non-static 

ROIs, feature selection method, and number of tracked points in each ROI, can be set 

to optimize the tracking results for each unique image set.  

Several computer vision techniques were applied to the images to track the pixels 

more easily and more accurately. The images were first corrected for camera lens 

distortion effect by using the camera lens distortion parameters for our specific cameras. 

These were obtained by taking photos of a checkerboard pattern at different angles and 



   

 

   

 

using the Camera Calibrator App in Matlab. Next, static and non-static ROIs were 

selected from the undistorted images. These can be chosen by the user or automatically 

generated from a spreadsheet of node coordinates and the camera's location in the global 

coordinate system. Then for each ROI, localized histogram equalization was 

implemented to eliminate shadows and sudden changes in lighting, allowing features to 

be more distinct and therefore easier to track. Finally, feature points were detected for 

each ROI using a Harris corner detector. Since the static ROI’s are so large, a primarily 

uniform spectrum of features was chosen over the area. For the smaller non-static ROI’s, 

the strongest features were chosen to get the most accurate tracking results. 

After the initial image processing, the feature tracking script iterated over each 

image in the set and calculated the pixel displacement of the feature points using the 

Kanade-Lucas-Tomasi (KLT) feature tracker, comparing each image to the first 

reference image. In computer vision, the Lucas–Kanade (LK) method [7] is a widely 

used differential method for optical flow estimation developed by Bruce D. Lucas and 

Takeo Kanade. Optical flow is the apparent motion of brightness patterns in an image, 

that ideally matches the motion field. The LK method assumes that the optical flow is 

essentially constant in a local neighborhood of the pixels under consideration and solves 

the basic optical flow equations for all the pixels in that neighborhood by the least 

squares’ criterion. By combining information from several nearby pixels, the LK 

method can often resolve the inherent ambiguity of the optical flow equation. It is also 

less sensitive to image noise than pointwise methods. The Kanade–Lucas–Tomasi 

(KLT) feature tracker [8] [9] combines feature detectors with the LK method, using an 

interest point/feature detector such as a Harris Corner Detector [10], to detect good 

features to track first, and then it does the tracking using the LK method.  

Once the KLT feature tracking was complete, a 2D geometric transformation was 

calculated using the tracked points in static ROIs in the same image to compensate for 

wind-induced camera vibration. Ideally, the camera should be fixed during the image 

collection process; therefore, the position of static regions should remain unchanged in 

the different images. However, due to wind sway, static regions in the image sets are 

not completely overlapped in different frames. Therefore, the measured displacement 

of the miter gate is not only actual gate movements but also includes camera motion-

induced displacement as well. To remove the camera motion displacement, some typical 

methods such as Direct Linear Transformation (DLT) and the M-estimator sample 

consensus (MSAC) algorithm were used [11, 12]. 

Subsequently, the pixel displacements were stored in an array. To help reduce noise 

and outliers, a moving average over time was deployed by taking the average of the 

current frame and the six frames before and after it for each feature point, where the 

time difference between each frame was 0.5 seconds. Additionally, an average over the 

feature points within the same ROI was taken to produce one displacement per ROI, 

where outliers more than one standard deviation away from the mean were thrown out. 

Also, ROI displacements with a standard deviation more than 0.5 pixels were thrown 

out to get rid of ROI displacements with bad tracking. 

Finally, a FEA model of the gate was created in Abaqus. The displacements at 

certain times of the fill event were recorded from the FEA in 3D world coordinates. To 

compare the FEA displacements to the field displacements, both displacements were 

converted to pixel units in the image coordinate system. Because only a single-lens 

camera was used to capture images rather than stereo cameras, projecting 2D tracking 

results into 3D world coordinate system with physically meaningful scale (e.g., meters) 



   

 

   

 

is difficult without additional information. Therefore, a feasible strategy is to project the 

3D physical displacements from FEA onto the 2D image plane in pixel coordinates. To 

achieve this 3D to 2D projection, the Camera Calibration Matlab GUI developed in [6] 

was used to obtain the projection matrix. Correspondence point pairs from the 3D FEA 

model and the 2D image were selected, and parameters such as focal length, image 

resolution, and sensor size were used as known constraints. Then, a nonlinear least 

square regression problem was solved to give the camera location and orientation in the 

3D world coordinate system, thus a 3D to 2D projection matrix was further obtained. 

More details of this camera calibration method can be seen in [6]. For future work, the 

difference between the FEA displacements and the field displacements will be used for 

model updating to get an accurate model of the current condition of the structure. A 

model-updating routine will be implemented by changing the boundary conditions of 

the Abaqus model at the miter and quoin, calculating the new displacements, and then 

repeating until the displacements match.  

To verify the accuracy of the developed vision-based structural displacement 

measurement algorithm, a physics-based graphics model (PBGM) of the Dalles miter 

gate was built in a synthetic environment. A PBGM is a photorealistic, graphical model 

that is coupled with a physics-based engineering model such as a FEA. For this study, 

the PBGM was built in Blender using a similar procedure as was developed in [5]. The 

3D physical displacement from the FEA was applied to deform the graphical model. 

Then after setting camera parameters to be the same as the field data cameras and 

adjusting the location and orientation of the camera according to the camera calibration 

result, images were rendered from both the undeformed and the deformed PBGM. 

Figure 2 shows the image rendered from the undeformed PBGM. Then, the developed 

vision-based structural displacement measurement algorithm was applied to track the 

pixel displacement between the two rendered images from the undeformed and 

deformed model, and the tracked displacement was compared with the pixel 

displacement from the FEA. The difference indicates the accuracy of the developed 

displacement estimation algorithm. 

 

 

RESULTS 
 

In this section, results of one of the image sets of a typical loading event are shown as 

an example. Figure 3 shows the static and non-static ROIs as well as the detected feature 

points in those ROIs indicated as red crosses. The non-static ROIs were automatically  

 

 

      
 

Figure 2. Undeformed PBGM miter gate Figure 3. Chosen static and non-static ROI’s. 



   

 

   

 

chosen to match corresponding nodes in the FEA. Points in the four static ROIs were 

used to calculate the 2D geometric transformation used to compensate for the camera 

motion-induced pixel displacement. After compensation, the field image pixel 

displacement for points in the static ROIs are smaller than 0.17 px for the image 

coordinate x-direction and 0.56 px for the image coordinate y-direction, which is 

extremely small considering the images are over 6,000 pixels wide and 4,000 pixels tall.  

For future model updating purposes and to evaluate the currently proposed 

algorithm, three cases were compared:  Case 1: “FEA”, which is the 3D physical 

displacement calculated from the FEA and then projected onto the 2D image plane. 

Case 2: “PBGM”, which is the 2D tracked displacement between the rendered images 

from the undeformed model and the model deformed under full hydraulic loading. Case 

3: “Field”, which is the 2D tracked displacement between the first and the last frame of 

the image set using the proposed displacement measurement algorithm. All cases show 

the displacement as the movement of the gate between empty and full hydraulic loading. 

Figures 4, 5, and 6 show the magnitude of the displacements in pixels at different points 

on the gate as heat maps for all three cases respectively. The colors are on a sliding 

scale, so that blue represents the minimum for that set and red represents the maximum, 

while black represents points that had poor tracking. Heat maps give context for the 

displacements to better visualize the data. For all three, the displacements near the quoin 

are the smallest with increasing displacement from the quoin towards the miter, and 

downwards along the height of the gate. For the field data, there seem to be a few 

outliers, which could be due to tracking errors from real environmental conditions such 

as water leaking from the quoin and miter. 
 

 

   
  

Figure 4. FEA displacement heat map. Figure 5. PBGM displacement heat map. 

 

  
 

Figure 6. Field displacement heat map. 



   

 

   

 

     
 

Figure 7. Difference between PBGM and FEA displacement magnitudes. 

 

   
  

Figure 8. Difference between Field and FEA displacement magnitudes. 

 

 

However, the differences between cases can be difficult to see in Figures 4, 5, and 

6. Figures 7 and 8 show the differences in displacements. The differences between 

PBGM and FEA seem to be very low with one lone red outlier. This indicates that the  

displacement measurement strategy has low error and is relatively accurate. The 

differences between Field and FEA show higher differences downwards along the 

height of the gate, which could mean those corresponding boundary conditions need to 

be updated in a model-updating schema. 

 

 

CONCLUSION 
 

In this paper, a vision-based displacement measurement strategy was developed and 

applied to a miter gate located at The Dalles, Oregon. A Kanade-Lucas-Tomasi (KLT) 

feature tracker was used to track displacements at different locations of the miter gate 

from a series of photos taken during a typical loading event. Computer vision techniques 

such as camera motion compensation with 2D geometric transformations, camera lens 



   

 

   

 

distortion removal, and localized histogram equalization of intensity were implemented 

to tackle inherent issues with field-collected image data. The accuracy of the developed 

displacement measurement algorithm was evaluated with the help of a photo-realistic, 

3D synthetic model of the gate. For future work, the difference between the FEA 

displacements and the field displacements will be used for model updating to get an 

accurate model of the current condition of the structure. A model-updating schema will 

be implemented by changing the boundary conditions of the Abaqus model at the miter 

and quoin, calculating the new displacements, and then repeating until the 

displacements match. With only minor adaptive changes, this strategy can also be 

readily applied to other large scale target structures, thus attracting interests of 

owners/managers of infrastructure. 
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