
ABSTRACT 

Validation and testing of Lamb wave based SHM algorithms requires numerous sim- 
ulations that require themselves qualitatively and quantitatively consistent models rep- 
resentative of the physical behavior of the monitored structures and that are in agree- 
ment with experimental data. Finite elements models appear as an interesting solution 
to achieve this goal but are associated with large computational costs and low general- 
ization abilities. On the other hand, data driven machine learning approaches are com- 
putationally very efficient and can predict fine details but at the cost of low physically 
interpretability. Original approaches trying to build physically informed models balanc- 
ing the advantages and drawbacks of physics-based approaches and of machine learning 
approaches also exist and will be discussed in the context of Lamb waves based SHM of 
aeronautical structures. 

 

INTRODUCTION 

In this article, the objective is to consider how innovative models for the simulation of 
guided wave propagation in aeronautical structures to monitor using Lamb based can be 
designed and validated. The requirements associated with such direct models for Lamb 
waves based SHM are to be able to simulate guided wave propagation in thin structures, 
to be computationally inexpensive, and to be faithful to the experimental reality. How- 
ever, the existing models from the litterature are yet not satisfactory: they require too 
much computation time, they are not representative of the physical phenomena studied, 
or they are not able to reproduce the experimental measurements faithfully enough. 

From a practical point of view, two sources of information are however available to 
build such models: information from physics, and experimentally obtained data. The 
expression of “physically informed” models will thus be used here in the sense that these 
two types of information will be combined simultaneously to build these models [1, 2]. 
This article thus aims at discussing methodologies for the creation of various models for 
Lamb wave SHM, based on physical knowledge and available experimental data, while 
ensuring their practical use. 
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DIRECT MODELS FOR LAMB WAVES BASED SHM

It is first necessary to clarify expectations when the idea of a direct model is raised.
In the context of structures monitored by Lamb waves based SHM, the structures are
thin and are equipped with active elements. During their life cycle these structures will
endure variations in their operational parameters (temperature, mechanical loading, ...)
as well as potential damage that will need to be monitored. The so-called “direct”
models will make it possible to predict the signals received by the active elements bonded
on the host structure in function of:

1. The properties of the input signal (frequency, number of cycles, amplitude, ...). An
input signal applied to the active element n ∈ [1, N ] will be noted as a time series
x(t). The resulting signals received by the active elements k ∈ [1, N ](k ̸= n) are
noted as time series ynk(t). For simplicity, we will note ynn(t) = x(t).

2. The properties of the host structure equipped with active elements (geometry, ma-
terials, positions, ...). All the parameters related to the host structure and the
electro-active elements are grouped in the vector S. The parameters related to
the host structure and to the active elements are grouped in the vector S.

3. The operating environment where the monitored structure evolves (mechanical
loading, temperature, ...). The associated parameters are grouped in the vector O.

4. Its health status. The damage parameters are grouped in the vector D.

Thus, a direct model MD[.] will be able to estimate for a structure S , in a damaged
state D and under operational conditions O, the set of signals ynk(t) with n, k ∈ [1, N ]
for a given x(t) input:

{ynk(t)}n,k∈[1,N ] = MD [x(t),S,O,D] (1)

It is important to specify that the objective here is to predict the propagation of guided
waves in thin structures, thus in 2D, and that the output is not the displacement field on
the whole host structure but simply the resulting electric voltages at the level of the
various active elements used as sensors.

DATA, PHYSICS, AND COMPLEXITY

The models described above must now be built on the basis of available information,
in a reasonable time, and be usable in practice. Two types of information are available to
build these models. Firstly, some knowledge of the physics of the phenomena studied is
available via the Lamb wave propagation equations, the waves/damage interaction laws,
and the various parameters associated with them, for example. Secondly, it is possible
to carry out experimental campaigns on real structures in order to obtain data sets for the
studied structures for different frequencies, amplitudes, environmental conditions, state
of damage... Finally, the models developed here have a practical purpose: they must be
parameterized or learned in an acceptable time and provide estimation results quickly
enough to be used in practice. There is thus a compromise to be found between the three



Figure 1. Non-exhaustive categorization of different models according to their needs in
terms of physical knowledge, experimental data, and algorithmic complexity.

factors that are physical knowledge, the need for experimental data, and the algorithmic
complexity in the construction and choice of these models.

Figure 1 proposes to categorize (in a non-exhaustive way) a certain number of usual
models according to their needs in terms of physical knowledge, experimental data, and
their algorithmic complexity. Among the models based exclusively on a physical knowl-
edge of the problem, it is possible to quote the finite element models (FEM) or the
analytical models (ANA). In contrast to physical approaches, neural networks [3] (NN)
are built on a purely data-driven approach and have no preconceived ideas about the
physics of the problem studied. Still in this category, the auto-regressive [4] (AR) mod-
els are conceptually simpler and less cumbersome to train than the NN models. Finally,
Gaussian processes [5] (GP) add to data-based models the possibility of quantifying esti-
mation uncertainties. Between these two extremes gravitate physically informed models.
The idea of these models is to propose a solution to these problems based on approaches
that not only learn from the data, but also use the knowledge of the physics of Lamb
wave propagation, without requiring a complete and fine-grained knowledge of the envi-
ronment. One of these models from the literature has been applied to the SHM case [6]
(Physically Informed Neural Network [PINN]).

PHYSICS BASED MODELS

This section first illustrates the strengths and weaknesses of physics-based models in
a Lamb waves based SHM context.

Finite-element models (FEM): The FE approach is the most common in the context
of SHM [7,8]. It is based on a fine-grained knowledge of the geometry and physical laws
within the structure under study. From the geometrical point of view, it relies on a mesh
that must be defined in advance and must coincide with the geometry of the host struc-
ture. For actual aeronautic structures which cover several meters, this therefore imposes



Figure 2. Examples of correlation results between a finite element simulation (in blue)
and experimental measurements (in red) (from [6]).

unrealistic meshes from the implementation point of view. Moreover, the frequencies
used being quite large, small time steps must also be considered. From a physical point
of view, a detailed knowledge of the constitutive laws of the different materials, of the
attenuation mechanisms, of the interactions with inhomogeneities, is necessary and must
be encoded in the model. In practice, these laws can be more or less well known, which
strongly limits the capacity of a finite element model to accurately represent experi-
mental data. Nevertheless, data from finite element models remain an excellent means
to validate SHM algorithms. Figure 2 illustrates the quality of correlation that can be
obtained between finite element simulations and experimental measurements. The first
packet is very well reconstructed, which means that the propagative aspects are well
modeled. However, this is not the case for the following packets, which shows the dif-
ficulty of modeling the interaction and attenuation laws. In conclusion, even if finite
element simulations are interesting from a qualitative point of view, the computational
costs and the limitations related to a certain lack of detailed physical knowledge are two
major disadvantages of finite element models.

Analytical models (ANA): Analytical models have also been used in the context of
SHM [7, 9]. They are attractive because they are often very efficient in terms of compu-
tational time and have the advantage of allowing a direct interpretation of the effect of
different physical parameters on the simulation results. Their main limitation lies in the
fact that it is impossible to accurately represent the geometry of a host structure with an
analytical model. On the other hand, advanced physical models can be relatively simply
included in analytical models, as was presented for example for Lamb wave attenuation.
In conclusion, analytical models are very efficient in terms of algorithmic complexity,
can potentially include complex physical laws, but unfortunately remain poor in geomet-
rical details and thus incompatible with complex structures.

DATA BASED MODELS

In contrast to the previous section, this section now illustrates the strengths and weak-
nesses of data-based models in a SHM context.



Figure 3. Comparison of temporal signals predicted by an autoregressive model associ-
ated with Gaussian processes with those obtained experimentally (from [5]).

Auto-Regressive Models and Gaussian Processes (AR et GP): The idea is now to
present a first category of models inherited from signal processing. The AR models are
associated with a recurrence equation and allow to model temporal sequences of samples
as it is the case in the SHM [4, 5]. These models are linear and are based on relatively
few parameters which makes them interesting from the point of view of algorithmic com-
plexity. These models can be easily enriched by Gaussian processes which will consider
that their parameters are known via their probability density and will therefore be able to
associate a confidence interval to their predictions. Figure 3 illustrates the performances
of an auto-regressive model associated with Gaussian processes. The predictions made
by these models are of very high quality. On the other hand, the interpretation of the
coefficients of these models from a physical point of view remains unfortunately impos-
sible. In conclusion, these models are efficient from an algorithmic point of view and
can model geometrically complex cases but it is not possible to easily link them to Lamb
wave physics.

Neural Networks (NN): Neural networks are an alternative to legacy signal process-
ing and data-driven models that is widely used in the context of Lamb waves based
SHM [6, 10–15]. The universal function approximation theorem indeed establishes
that multilayer neural networks have the ability to approximate any continuous func-
tion given a sufficient number of hidden units [3]. This suggests that a neural network
should thus be able to approximate the solution of the wave equation by learning the ap-
propriate weights from the training data for any geometry and for any damage case. The
counterpart of this accuracy is a cost in terms of training data as well as a cost in terms
of complexity in the learning phase. In conclusion, these models allow to reach a high
degree of accuracy but require a large amount of training data as well as an important
training time. Moreover, the physical interpretation of these models remains extremely
delicate and their generalization, i.e. their use for cases which do not correspond to
training cases, is not guaranteed.



PHYSICALLY INFORMED MODELS

The preceding sections thus illustrate the strengths and weaknesses of either data-
only or physics-only models. This need to combine physics knowledge with data-
driven modeling is the focus of an emerging field called scientific machine learning
(SciML) [16] or even theory-guided data science [1, 2]. The underlying idea is to ex-
plore synergistic ways that use physical domain knowledge to aid machine learning.
Data-driven models will thus be trained to learn from the physical data while respecting
certain constraints imposed by the physical domain knowledge under consideration. This
hybridization between data and physics can be injected at different levels in the model-
ing process and be of varying magnitude. Four paths are thus identified as relevant for
possible physics-driven approaches in the context of SHM:

1. The physical interpretation of the models built from the data.

2. The respect of the elementary laws of physics underlying the studied problem.

3. The construction of a neural network specialized for the studied problem.

4. The integration of the topology of the problem in the neural network.

The first two levels are briefly detailed in the following and the few works related
to Lamb wave SHM at these levels are mentioned. The higher levels have not yet been
studied in a SHM context from the authors knowledge.

Level #1 → Explained Artificial Intelligence (XAI): As previously mentioned, data-
driven models are very attractive because they are able to accurately predict experimental
data. On the other hand, the information captured, via the coefficients of the models, is
difficult to interpret from a physical point of view. A field of research called Explained
Artificial Intelligence (XAI) seeks to understand, then to physically interpret neural net-
works and can therefore be interesting in this context [17–20]. Some applications to
guided wave SHM of XAI are present in the literature [21–24]. The work done allows
for example to analyze among the different actuator-sensor paths available which are
the most exploited by the neural networks to perform their prediction, or to determine
the portions of measured signals important for damage detection or localization. These
XAI approaches for Lamb wave SHM thus mainly provide confidence that the neural
networks have learned information that is intuitively relevant from a physical point of
view (the first wave packet carries a lot of information or the paths through the damage
are informative) but do not really provide a way to act on the models to include more
physical meaning.

Level #2 → Physically Informed Neural Networks (PINN): Another popular data-
physics hybridization strategy, called Physics Informed Neural Networks (PINN), in-
volves imposing physical constraints, in the form of partial differential equations for
example, to act as a regularizer in the cost function of a neural network [25]. Figure 4
shows an example of a comparison between predictions made by a PINN model and
an element-finite simulation. In this example taken from [6], time-of-flight information



Figure 4. On the left, typical structure of a PINN (from [26]) and on the right example of
comparison between predictions made by a PINN model and a finite element simulation
(from [6]).

is included in the cost function in order to impose a link between the physics and the
learned model. The first two packages are globally well predicted even if their ampli-
tude is not exactly similar between the learned model and the finite element reference
used here. This class of models is therefore mainly based on data but allows the addition
of physical constraints. However, in the example presented, this addition of physical
constraints results in a slight loss of accuracy.
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12. Sattarifar, A. and T. Nestorović. 2022. “Emergence of Machine Learning Techniques in Ultrasonic
Guided Wave-based Structural Health Monitoring: A Narrative Review,” International Journal of
Prognostics and Health Management, 13(1).

13. Ewald, V., R. M. Groves, and R. Benedictus. 2019. “DeepSHM: A deep learning approach for struc-
tural health monitoring based on guided Lamb wave technique,” in Sensors and Smart Structures
Technologies for Civil, Mechanical, and Aerospace Systems 2019, SPIE, vol. 10970, pp. 84–99.

14. Rautela, M., J. Senthilnath, J. Moll, and S. Gopalakrishnan. 2021. “Combined two-level damage iden-
tification strategy using ultrasonic guided waves and physical knowledge assisted machine learning,”
Ultrasonics, 115:106451.

15. Gantala, T. and K. Balasubramaniam. 2022. “DPAI: A Data-driven simulation-assisted-Physics
learned AI model for transient ultrasonic wave propagation,” Ultrasonics, 121:106671.

16. Baker, N., F. Alexander, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm, M. Parashar, A. Patra,
J. Sethian, S. Wild, et al. 2019. “Workshop report on basic research needs for scientific machine
learning: Core technologies for artificial intelligence,” Tech. rep.

17. Das, A. and P. Rad. 2020. “Opportunities and challenges in explainable artificial intelligence (xai): A
survey,” arXiv preprint arXiv:2006.11371.

18. Samek, W., G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller. 2021. “Explaining deep
neural networks and beyond: A review of methods and applications,” Proceedings of the IEEE,
109(3):247–278.

19. Kashinath, K., M. Mustafa, A. Albert, J. Wu, C. Jiang, S. Esmaeilzadeh, K. Azizzadenesheli,
R. Wang, A. Chattopadhyay, A. Singh, et al. 2021. “Physics-informed machine learning: case
studies for weather and climate modelling,” Philosophical Transactions of the Royal Society A,
379(2194):20200093.

20. Samek, W., L. Arras, A. Osman, G. Montavon, and K.-R. Müller. 2022. “Explaining the Decisions of
Convolutional and Recurrent Neural Networks,” Mathematical Aspects of Deep Learning:229.

21. Pandey, P., A. Rai, and M. Mitra. 2022. “Explainable 1-D convolutional neural network for damage
detection using Lamb wave,” Mechanical Systems and Signal Processing, 164:108220.

22. Lomazzi, L., M. Giglio, and F. Cadini. 2022. “Explainable framework for Lamb wave-based dam-
age diagnosis,” in Current Perspectives and New Directions in Mechanics, Modelling and Design of
Structural Systems, CRC Press, pp. 1775–1780.

23. Lomazzi, L., S. Fabiano, M. Parziale, M. Giglio, and F. Cadini. 2023. “On the explainability of con-
volutional neural networks processing ultrasonic guided waves for damage diagnosis,” Mechanical
Systems and Signal Processing, 183:109642.

24. Ewald, V., R. S. Venkat, A. Asokkumar, R. Benedictus, C. Boller, and R. M. Groves. 2022. “Per-
ception modelling by invariant representation of deep learning for automated structural diagnostic in
aircraft maintenance: A study case using DeepSHM,” Mechanical Systems and Signal Processing,
165:108153.

25. Raissi, M., P. Perdikaris, and G. E. Karniadakis. 2019. “Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differential
equations,” Journal of Computational physics, 378:686–707.

26. Li, K. and M. Chitre. 2022. “Data-aided Underwater Acoustic Ray Propagation Modeling,” arXiv
preprint arXiv:2205.06066.




