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ABSTRACT 

Detection of defects is of outmost importance for composite airframe due to barely 
visible damage which may appear at any time during lifetime. Several Structural Health 
Monitoring (SHM) technologies have been developed so far to continuously monitor the 
condition of the structure. Guided Ultrasonic Waves (GUW) are well suited for this ap- 
plication, but there is still a significant gap in reliability assessment and quantification 
of system performances. Although the theory of Probability of Detection (POD) can be 
used to this end, but the reliability assessment procedure needs to be properly addressed 
for each type of system. In this work different concepts are proposed, including two 
artificial intelligence approaches, tested and compared to enable a reliability assessment 
comparable to the conventional POD framework. On top, a novel approach on how to 
combine experimental data of the undamaged structure with simulations of the damaged 
structure is proposed. The proposed ideas are tested on a single carbon fiber composite 
specimen, and data is analyzed using all the different concepts. The results show that 
classic POD and AI-based reliability assessment can be compared as well as experimen- 
tal and synthetic data can be used when the experimental variability is matched properly 
providing a paradigm shift in the reliability assessment field. 

 
INTRODUCTION 

Reliability assessment is a major problem for SHM systems. The community is miss- 
ing methods on how to show that specific SHM systems meet the requirements within a 
certification process [1]. Only few approaches exist, mainly trying to adopt the proce- 
dure of Probability of Detection (POD) known from Non-Destructive Testing (NDT) to 
SHM are available [2, 3]. These approaches all fight with drawbacks resulting from the 
differences between NDT and SHM, like the fixed sensor positions, the dependence of 

 

Vittorio Memmolo, University of Naples “Federico II”, Italy 
Jochen Moll, Oliver Schackmann, Goethe University Frankfurt, Germany 
Steffen Freitag, Anastasiia Volovikova, Karlsruhe Institute of Technology, Germany Kilian 
Tschoke, Enes Savli, Fraunhofer IKTS, Dresden, Germany 
Yevgeniya Lugovtsova, BAM, Germany 
Maria Moix-Bonet, DLR Braunschweig, Germany 
Ahmed Bayoumi, Inka Mueller, Bochum University of Applied Sciences, Germany 



POD on damage location as well as high costs, especially for advanced SHM systems

applied to sophisticated structures. To prevent the necessity of expensive experimental

campaigns, approaches based on simulation only have been developed, including the lo-

cation dependency by using POD maps [4] or including SHM specific variations in the

simulation [5].

This paper presents new thoughts and ideas on how to tackle the problem. Instead

of presenting these separately, a brief overview on the concepts to be discussed com-

paratively in the context of the conference is given. Three non conventional concepts

will be presented: first, an AI-based concept using Artificial Neural Networks (ANN),

second, an AI-based concept using Convolutional Neural Networks (CNN) and third,

a Model-Assisted POD (MAPOD) concept, combining simulation and experiment. To

show the applicability of these concepts, the same dataset from the experiment is used,

namely raw data from the Open Guided Waves (OGW) platform [6]. While the AI-based

approaches are using experimental data only, the MAPOD approach necessarily needs

simulation data, which is added to the existing experimental dataset. The further steps

on data processing are specific for each concept.

The following section describes the data set and the three concepts. It is followed by

a section presenting the results, which are summarized in the conclusion.

DESCRIPTION OF DATA SET AND DESCRIPTION OF CONCEPTS

Open Guided Wave Dataset

The experimental dataset used for testing the concepts is available at the OGW online

platform and has been acquired using a carbon fibre reinforced polymer (CFRP) speci-

men equipped with a network of piezoelectric transducers, see [7] for detailed informa-

tion on the manufacturing and inspection of the plate and [6] for additional information

regarding the omega stringer and the data acquisition. A Hann-windowed sinusodial

signal with a central frequency of 40 kHz is used for excitation. To imitate the effect of

damage on the guided wave propagation, artificial reversible damage of multiple sizes is

employed.

For the MAPOD concept, the necessary simulation data set is based on Elastody-

namic Finite Integration Technique (EFIT) simulations. The theoretical background is

described in detail in [8, 9]. The advantages of this simulation strategy are the very fast

calculation while being able to accurately describe also more complex structures with

curved edges, stringers, etc. The simulated dataset as well as the experimental dataset

are shown in Figure 2(a).

To assess the condition of the structure, a damage indicator (DI) is defined by evalu-

ating the energy difference between two signals as:

DIE =
N∑
k=1

(xC(k)− xB(k))
2

(1)

where xB(k) represents the discrete signal response of the pristine state and xC(k) of

the current state in Volts at time step k. N represents the maximum number of data

points. Here, the pristine state is calculated as the average of five signals measured at



Figure 1. Comparison of reliability assessment steps for the different proposed concepts.

undamaged state. A close to zero DI value indicates a healthy state, while increasing

DI values correlate with growing defect sizes.

Comparison of POD, AI and MAPOD Concepts

The reliability assessment of an SHM system aims to evaluate whether a required

minimum defect is detected with a statistically meaningful confidence and at an accept-

able level of false alarms. Although many approaches are available, POD is still the

most accepted metric to return the minimum size of the damage, which is detectable by

the NDT/SHM methods. However, new concepts need to be investigated to accomplish

the necessity either to assess new diagnostic algorithms (AI) or introduce synthetic data

for predictions (MAPOD). Every concept requires a specific procedure for reliability

assessment, whose steps are summarized in Figure 1 and described hereinafter.

The classical POD concept relies on the use of measurement derived data to build

up the POD versus the flaw size, more details can be found in [10, 11]. Generally,

there are two approaches to estimate the POD curve; the Hit/Miss method and â vs a



method. Among different approaches, the â vs. a method is well suited to look into DI-

based SHM systems because it can be used as the signal response (â) to predict damage

dimension (a). Employing the â vs. a approach, it is possible to estimate the signal

response of an SHM system versus flaw dimension in a statistically meaningful way and

the inherent POD is defined as:

POD(a) =

∫ ∞

âdec

fâ|a (â) dâ , (2)

where f(â) is the normal probability density function around the predicted response.

Applying 95 % confidence bounds to account for prediction errors, the flaw dimension

a90|95 which returns 90 % POD is generally referred as minimum detectable damage,

as it can be detected by the system in a statistically significant way. The a90|95 value

calculated for each sensor pair individually can be considered as means of comparison

with non-classical approaches, together with the false alarm ratio established. It is worth

noting that the threshold of the damage indicator is tuned to be twice the noise level.

One of the major efforts of this work consists in the use of AI-based predictors for

damage detection and quantification of the reliability with a POD-like concept. The main

idea of the AI-based method, used in this publication, is to take into account all paths

of the experimental setup from OGW to train and test a neural networks in classifying

whether a damage is present or not and assess the reliability of such a network through

the probability of correct classification.

The ANN concept is based on the idea introduced in [12] to use the damage indicator

(DI) as given by Eq. (1) as input of a feed-forward ANN to get a binary classification of

the plate state (damaged/undamaged) as output. To tune the unknown network parame-

ters and test the generalization performance of the ANN to unseen data, the OGW data

set is divided into a training and a generalization testing data set. The training data set

consists of 20 samples (DIs) for the undamaged (baseline) condition and 5 samples for

each of 13 different damage sizes at two damage locations D2 and D3, both along all

65 actuator-receiver paths except the path 3-9, i.e. 9750 samples. After the ANN-model

is trained, the generalization performance is evaluated with a generalization testing data

set, which consists of 20 undamaged and 5 damaged samples for each damage size and

damage location D1 along only path 3-9, which leads to 85 samples for the generaliza-

tion testing.

The fully connected ANN consists of one input neuron (damage indicator), two hid-

den layers with 8 neurons per layer and one output neuron, which classifies the input

value of the damage indicators to either undamaged or damaged condition. The hid-

den neurons are activated by the hyperbolic tangent sigmoid function (tansig) and the

softmax activation function is used in the output neuron. The Levenberg-Marquardt-

Algorithm is applied to train the ANN, where 70 % of the 9750 samples are used for

the identification of the unknown network parameters (synaptic weights and bias val-

ues), 15 % of the samples are employed for validation and 15 % for testing the training

performance, respectively.

To tune the false alarm rate, a weighting of the training errors according to the dam-

age size is introduced according to [12]. The weighting factor for the damaged samples

is computed for each damage size as the ratio of the area of damage and the maximal

area of damage. This leads to weighting factors between 0.024 for the smallest damage



size and 1.0 for the largest damage size. Due to the low amount of undamaged samples

(just 13 %), the undamaged samples are weighted by a factor of 1.8, which results in a

false alarm rate of 0.15 in the training data set.

The CNN concept relies likewise on the use of a trained CNN-model to distinguish

damaged from undamaged plate. Otherwise, CNNs have the advantage of processing

data instead of using scalar information thereof. The idea is again to feed CNN with

Guided Ultrasonic Wave (GUW) measurements for the binary classification of damage

(hit/miss). However, due to their structure, CNNs are particularly suited to process im-

ages. To this end, GUW signals are converted into a suitable (image-like) form by trans-

forming the time history into a spectrogram (SP) using a short-time Fourier transform.

This latter has the advantage of preserving most of frequency and time information and

representing a suitable input for the machine learning algorithm. Nonetheless, to en-

able a data-efficient training phase, the use of smaller images is preferable. Therefore,

the signals are further compressed into Mel-Frequency Cepstrum Coefficients (MFCC)

matrices and then used to discriminate between undamaged and damaged status.

The CNN structure presented in [13] successfully applied to the Fashion-MNIST

data set served as a template. This has been designed as a slightly more sophisticated

version of the MNIST dataset, which is very well known for testing machine learning

algorithms, and consists of 70000 grayscale images of size 28x28 of fashion items from

ten categories. Since the size of these images is very similar to those of the MFCC

matrices (20x32), the same model architecture should work well for the task at hand.

Further details are reported in [14]. The data sets for training and generalization testing

of the CNN-model are the same as used for the ANN-model.

To quantify the reliability of the AI-based results, the probability of correct classifi-

cation is calculated for the training and generalization testing phase. To get the minimal

detectable damage size and compare the results with the POD approach, the probability

of correct classification is evaluated for each damage size available in the OGW data set

and for the probability level of 0.9, the corresponding damage size is back computed by

a linear interpolation between the closest available damage sizes.

The MAPOD concept in general aims to involve a statistically independent data set

using simulation, but most approaches are based on simulation data only, thus, being

more a simulation-based POD than a model-assisted POD [4,15–18]. The MAPOD con-

cept proposed in this work consists of a novel approach on how to combine experimental

data of the undamaged structure with simulations of the damaged structure in order to

use the experiment to account for several uncertainties that can not be simulated [19].

Its procedures are similar to the POD approach. From linear regression analysis of the

simulation data, a POD curve is generated. But the experimental input is used to adopt

the slope, intercept and normal distribution around the regression line. The experimental

measurements are recorded from one damage-free structure, while damage scenarios are

simulated using EFIT.

The idea is that the influences leading to data scattering are independent in the ex-

periment (variation of DI at undamaged state) and simulation (variation of DI around the

regression line at damaged state). The scattering around the linear regression line of the

simulated data set and the influential parameters of the experimental campaign are both

normally distributed. Therefore, adding randomly selected values within the normal dis-

tribution interval of the experiment baseline measurements to the simulation data sets is



possible. Then, subtracting these two normally distributed values results in varying the

linear regression analysis to:

Y = mcX + (βc)± N(0, τc) (3)

where mc, βc is the slope and intercept of the combined data set, and τc is the standard

deviation of the scattering around the regression line with a mean value equal to zero.

The combined linear regression parameters result from combining experimental baseline

measurements with the simulated damage states dataset. This approach is considered a

conservative approach [18].

RESULTS

As the traditional POD based on the experimental data is only used as a reference for

all other results, the POD and MAPOD results are shown first, followed by the results of

the two AI concepts. Figure 2(a) displays the relationship between the damage indicator

(DI) and damage size A for the experimental and simulational damage scenario data sets.

The results show a good agreement between the two data sets, indicating the accuracy

of the EFIT numerical model. Figure 2(b) shows the POD and MAPOD results of the

data set analyzed under the same threshold (0.015) for a damage size that varies between

[50-1000] mm2. The blue lines represent the classical POD approach evaluated using

the experimental data of the undamaged and damaged state. The fuchsia lines give the

Figure 2. (a) Comparison of DI vs. damage size A for simulation and experimental data sets at a

fixed threshold. (b) Comparative study of POD curves evaluated using experimental data set

only, simulation data set only, and the combined concept. Data from path 3-9 and damage D1.
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Figure 3. Probability of correct classification for CNN and ANN using data from all paths with

damage D2 and D3 (training) and generalizing to damage D1 for path 3-9 only (testing).

results of the POD analysis purely based on the simulation data of the damaged state.

The green lines show the results of the new MAPOD concept, combining simulated

damage scenarios with experimental baseline measurements. The results show that the

POD curve of the experimental data set, along with its confidence bounds, lies between

the POD analysis of the simulation and the combined data set. Combining simulated

damage scenarios with experimental baseline measurements results in a shift of the POD

curve to the right, an increase in the standard deviation of the parameter of POD, and an

increase in the confidence bounds. In other words, adding the experimental features to

the simulated data set leads to a more conservative way of estimating the POD, with a

larger range of uncertainty. By using simulations for the damaged states, it is no longer

necessary to damage the real structure for estimating POD without loosing accuracy or

being less conservative.

The ANN is evaluated systematically to compute the probability of correct classi-

fication for the undamaged samples (to get the false alarm rate) and for each damage

size. In Figure 3, the probability of correct classification is presented for the training

data set (D2 and D3 along all paths except 3-9) and for the generalization test data set

(D1 at path 3-9). The values for a damage size of zero correspond to the probability

of correct detection of undamaged samples, i.e. 1.0 minus the false alarm rate, which

is 0.13 for the training data set, where the overall probability of correct classification is

87%. Using linear interpolation between the probability of correct classification for the

different damage sizes, the damage size of 388 mm2 with a POD of 0.9 can be evaluated

in the training data set. It should be noted, that the results can be improved by using

multiple damage indicators as inputs of the ANN and by filtering the training data, e.g.,

according to its distance to the damage [12]. The trained ANN has a high generalization

performance, as the generalization testing data set leads to a 100 % correct detection for



each damage size and a 0 % false alarm rate. The DI threshold of the trained ANN is

back computed to 0.0085.

The same procedure is used to evaluate systematically the CNN and compute the

probability of correct classification for undamaged and damaged states. In this case, the

overall training and validation accuracy is 97 % while the false alarm rate is less than

4 %. However, it is again possible to state that the trained CNN has a high generalization

performance, as the testing data set also leads to a 100 % correct detection for each

damage size and a 0 % false alarm rate. Having a better look at the probability of correct

classification versus damage size for the training dataset, even though the accuracy is

slightly lower (when all paths are considered, a few channels have little information

content, which reduces the accuracy), the probability of correct classification is always

higher than 85 % and the damage size of 74.3 mm2 with a POD of 0.9 can be evaluated

in the training data set.

Since in both cases, extrapolation for damage size smaller than damage #1 cannot

take place, it is worth highlighting that it is possible only to state that the equivalent

metrics of a90|95 for AI predictions using testing dataset is smaller than 50 mm2.

CONCLUDING REMARKS

This paper presents different concepts for performance analysis of guided wave-

based SHM systems using either real data or a combination of real and synthetic data.

The former dataset is from the Open Guided Waves platform, while the latter is obtained

by injecting EFIT simulation results. First, the comparison of the classic POD approach

exploiting the first dataset and the MAPOD concept relying on the second dataset shows

that the last one is slightly more conservative in assessing the minimum detectable size,

which is generally beneficial for real-world applications, making it an efficient alterna-

tive for assessing the reliability assessment of SHM systems, without the need to apply

variable damage scenarios on a real application. Second, AI based concepts showed

the feasibility of reliability prediction using the probability of correct classification for

either pristine condition (probability of false alarm) or damaged case (probability of de-

tection). In particular, testing both ANN and CNN along the same path used for the

classic approach returns very high reliability with the possibility of correctly identifying

the minimum size of the damage. However, it is not possible to extrapolate the minimum

detectable size, as there is not any model for POD like in the classic concept.
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Network Towards a holistic quality assessment for guided wave-based SHM (project

number 424954879).
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4. Tschöke, K., I. Mueller, V. Memmolo, and et al. 2021. “Feasibility of model-assisted proba-

bility of detection principles for structural health monitoring systems based on guided waves

for fiber-reinforced composites,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
quency Control, 68(10):3156–3173.

5. Calmon, P., O. Mesnil, R. Miorelli, X. Artusi, B. Chapuis, and O. D’almeida. 2019. “Model

assisted probability of detection for guided wave imaging structural health monitoring,” in

Structural Health Monitoring 2019, DEStech Publications, Inc.

6. Moll, J., C. Kexel, J. Kathol, C.-P. Fritzen, M. Moix-Bonet, C. Willberg, M. Rennoch,

M. Koerdt, and A. Herrmann. 2020. “Guided Waves for Damage Detection in Complex

Composite Structures: The Influence of Omega Stringer and Different Reference Damage

Size,” Applied Sciences, 10(9):3068.

7. Moll, J., J. Kathol, C.-P. Fritzen, M. Moix-Bonet, M. Rennoch, M. Koerdt, A. S. Herrmann,

M. G. Sause, and M. Bach. 2019. “Open Guided Waves: online platform for ultrasonic

guided wave measurements,” Structural Health Monitoring, 18(5-6):1903–1914.

8. Schubert, F. 2004. “Numerical time-domain modeling of linear and nonlinear ultrasonic

wave propagation using finite integration technique - theory and applications,” Ultrasonics,

42:221–229.
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