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ABSTRACT

Atmospheric corrosion is a significant challenge the aviation industry faces, as it
greatly affects the structural integrity of aircraft operated long after introduction.
Therefore, an appropriate corrosion deterioration model is required to predict corrosion
problems. However, the deterioration model is challenging to use in practice due to the
limited data available for parameter estimation; thus, high uncertainty in prediction is
unavoidable. To address these challenges, a method of integrating a physics-based
model and a data-driven model on a Bayesian network (BN) is presented. The
atmospheric corrosion environment is modeled using COMSOL, and a BN is
constructed. Model calibration is performed using the collected atmospheric corrosion
monitoring data at aircraft parking areas. The calibration approach improves upon
existing models by incorporating actual environmental data, making it more accurate
and applicable to real-world scenarios. Using the calibrated model, a method for
optimizing the inspection and maintenance (I&M) scheme is described. In conclusion,
our research emphasizes the importance of precise corrosion models for predicting and
managing atmospheric corrosion in aircraft structures. BN that integrates physics-based
and experimental monitoring data can improve the accuracy and applicability of these
models, ensuring the safety and structural integrity of aircraft. And also, the results open
up new avenues for future research, such as incorporating additional data sources to
improve the accuracy of corrosion models further.

INTRODUCTION

Atmospheric corrosion is a time-dependent deterioration mechanism that
significantly affects the structural integrity of equipment operated for long periods of
time. According to Findlay and Harrison [1], more than 20% of aircraft component
failures are related to corrosion. Corrosion accelerates the aging of aircraft structures by
interacting with other deterioration mechanisms such as fatigue cracking and stress
corrosion cracking.
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The factors that contribute to corrosion are the type of metal, potential difference,
atmospheric corrosion environment, etc [1]. Since aircraft are operated in external
environments for extended periods of time, they are greatly affected by atmospheric
corrosion. 1SO 9223 identifies relative humidity, chloride accumulation rate, and sulfur
dioxide accumulation rate as the main factors that affect material corrosion in
atmospheric environments [2].

To prevent corrosion, an appropriate corrosion deterioration model is necessary.
However, due to the limited availability of data for parameter estimation, as well as the
high level of uncertainty in predicting results, the corrosion deterioration model is
difficult to utilize in practice. Previous studies have modeled multiple physical
phenomena using commercial software such as COMSOL Multiphysics [3, 4]. The
previous models include several assumptions and has limitations in representing the
corrosion environment of specific regions because the modeling results were verified
by conditions constructed in a laboratory.

This study proposes a method of combining a physics-based model with a data-
based model. The combined model can provide a metamodel for risk analysis. In chapter
2 of this paper, the preparation process for obtaining an improved atmospheric corrosion
environment model is described. Experimental measurement [5] and simulation
methods are presented. The calibration method using BN and the overall research
procedure are also described. Chapter 3 presents and discusses the results of
atmospheric corrosion monitoring. It also covers the simulation results and the changes
in the calibrated model using BN. Finally, chapter 4 presents the conclusions and
limitations of the study, as well as suggestions for future research directions.

EXPERIMENTAL
Atmospheric corrosion monitoring

In reference to the USAF case study [6], a set of atmospheric corrosion monitoring
equipment and specimen cards were designed to measure the corrosion rate, relative
humidity, and chloride accumulation of key metallic materials (Fig. 1). The specimen
cards consist of a total of six metallic specimens, including silver (Ag) for chloride
accumulation measurement, copper (Cu), aluminum alloys (AA2024, AAG6061,
AAT7075), and carbon steel for corrosion rate monitoring. The specimen cards were
installed at aircraft parking areas in 13 air force bases nationwide and were retrieved
and analyzed by the Aero Technology Research Institute.

The retrieved specimens were cleaned to remove foreign substances and the
corrosion rate was calculated according to ASTM G1 [5, 7]. For carbon steel specimens,
the weight before and after cleaning was measured, and the specimen was repeatedly
rinsed with 50 vol% hydrochloric acid solution for 2 minutes, with the weight measured
after each rinse. The mass loss due to corrosion was estimated by determining the point
at which the slope of the graph changes since the degree of reaction between the
corroding material and the substrate is different.
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Figure 1. Corrosion monitoring set and details of a ébecimen card

The relative humidity was measured using a temperature and humidity sensor
(Testo-174H). The time of wetness (TOW), which is the duration when the temperature
exceeds 0°C and the relative humidity exceeds 80%, was calculated. The annual
chloride accumulation was estimated using X-ray photoelectron spectroscopy (XPS)
analysis of the sample surface [5]. Specifically, the depth of etching was calculated by
multiplying the exposure time of the ion beam by the etching rate. The etching volume
was calculated by multiplying the etching depth by the etching area, and the etching
mass was calculated by multiplying the silver density. Finally, the chloride
accumulation during the exposure period was calculated using the vertical composition
and distribution analysis (Depth profiling) results of each element. The calculation
method involves some error due to the variation in composition with depth in the sample.
However, it was deemed valid as it showed a relatively high correlation with the
chloride accumulation of the same sample measured using other quantitative methods
such as XRD and Coulometric Reduction [5, 8].

Atmospheric corrosion modeling

The atmospheric corrosion environment was modeled in one dimension using the
simulation method (Figure 2). The boundary 1 represents flux boundary condition due
to electrochemical reactions occur on the iron surface (electrode surface), and boundary
2 is set as the constant electrolyte potential. The following reactions were considered on
the electrode surface:

Fe —» Fe?t + 2e~ (1)
2H* +2e~ > H, (2)
02+2H20+29_ —)40H_ (3)

Eq. (1) represents the oxidation of iron and Eqg. (2) and (3) are hydrogen evolution and
oxygen reduction reactions, respectively.
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Figure 2. Scheme for physics-based modeling

To implement electrochemical reactions in the model, the secondary current
distribution interface is utilized. The secondary current distribution interface explains
the activation loss caused by reactions at the electrode surface. The relationship between
charge transfer and overpotential can be expressed by the following two equations.

The corrosion current density is expressed by the Butler-VVolmer equation.

. . OfaFU _aan
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where, icor represents the corrosion current density, io is the initial current density, o
and ac are the forward (anodic) and backward (cathodic) transfer coefficients,
respectively. F is Faraday's constant, which is 96,485 C/mol, and R is the gas constant,
which is 8.314 J/Kmol. T is the temperature. Here, n represents the activation
overpotential and can be expressed using the Tafel equation.

1= log (—) 5)

corr

where [ is the Tafel slope (unit: voltage).

In summary, the secondary current distribution interface calculates the current and
potential distribution in an electrochemical cell, assuming that the electrolyte layer has
a constant electrical conductivity. Therefore, charge transfer satisfies Ohm's law. Under
the assumption that the conductivity is constant, the changes in the electrolyte
composition due to electrochemical reactions can be ignored, and ion movement can be
considered to contribute only to changes in the current in the electrolyte [9].

I=— (6)

where, E refers to the electric field and R refers to the gas constant. In addition, changes
in the electrical conductivity and thickness of the electrolyte layer due to relative
humidity and salt accumulation density were also taken into account [4]. Above all, the
simulation process allowed us to obtain a physics-based model for atmospheric
corrosion.

Calibration using Bayesian network

BN are probabilistic models represented by directed acyclic graphs, which model
the joint probability mass function (PMF), p(x), of a set of random variables X. As the
number of variables in X increases, the space of X, i.e., the number of outcome states
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Figure 3. Procedure for research

for which p(x) must be computed, increases exponentially. However, BN modeling
allows for efficient computation by representing the joint probability distribution as a
product of local (conditional) distributions for each variable.

An expectation-maximization (EM) algorithm is commonly utilized for inferring
parameters when the available data is incomplete. The EM algorithm consists of two
steps: the E-step and the M-step. In the E-step, an estimate of the probability distribution
over the possible missing data is computed using the current or previously estimated
parameters. This is achieved by selecting a function, g, which reduces the objective
function log Pr(x;z) at all points. In the M-step, the maximum likelihood method is
employed to search for the local maximum of g. The two steps are repeated until the
parameters converge, yielding the global maximum of the objective function. Since the
objective function is equivalent to gz, the following relationship holds true:

log Pr(x;é(t)) = gt(é(t)) < gt(é(t+1)) = log Pr(x;ZA(t+1)) 7)

As a result, the objective function will consistently increase with each iteration of
the EM algorithm.

Framework

The research methodology is composed of three main steps, as shown in the
flowchart (Fig. 3). Firstly, a physics-based model for atmospheric corrosion
environment is developed. The implemented model is then parameterized into a linear
model for TOW and chloride accumulation. Here, the model is represented by
parameters (6o, 61). Model calibration is performed using the monitoring data from the
study by Lee et al. [5]. The calibration procedure involves constructing dose-response
functions (dose-response functions) using BN. The parameters (6o, 01) then are updated
during the calibration process. Finally, the calibrated model can be used to perform a
risk analysis and compare the results with those obtained from the previous analyses.

RESULTS AND DISCUSSION

Atmospheric corrosion monitoring

The geographic environment is divided into coastal and inland areas and is
combined with the regime of tides and currents. In Table I, bases with a hat(")



symbol(4;, 4,, B, and B,) have roofs installed over their revetments. The revetment of
Base A4, has a high roof installed.

The monitoring data for atmospheric corrosion environment, including distance
from the coast, TOW, chloride accumulation, and carbon steel corrosion rate, are shown
in Figure 4. TOW and carbon steel corrosion rate exhibit a positive correlation (Pearson
correlation coefficient of 0.6), while chloride accumulation and carbon steel corrosion
rate show a strong correlation (Pearson correlation coefficient of 0.9). TOW and rainfall
show a weak but statistically significant correlation.

Atmospheric corrosion modeling

The results of simulations are shown in Figure 5. The physics-based model is
obtained by the linear regression of simulation results. From the regression model, the
annual corrosion rate of the physical-based model is proportional to the TOW and
inversely proportional to the CI” accumulation.

TABLE I. AIR BASES CATEGORIZED BY GEOGRAPHICAL LOCATIONS AND TYPES
OF AIRCRAFT PARKING AREA

Environment Coastal Inland
Revetment AL A, By, B;,Bs, B,
Shelter Ci, Gy, C3 Dy,D,,D;,D,

Base Code
Base Code

0 20 40 60 80 100 0 1000 2000 3000 4000
Distance to Sea (km) Time of Wetness (h)
(a) (b)

Base Code
Base Code

0 01 0.2 0.3 04 0.5 0.6 0 50 100 150
Chloride Deposition Rate (mg/m 2da},‘) Steel Corrosion Rate (g/m 2year)
(©) (d)

Figure 4. Comparison of atmospheric corrosion monitoring data of ROKAF showing (a) distance to
sea, (b) time of wetness, (c) chloride accumulation rate, and (d) steel corrosion rate
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Figure 5. Atmospheric corrosion modeling results with linear fitting
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Figure 6. Bayesian network for calibration

Calibration and validation

Figure 6 illustrates the calibration process to implement a dose-response function
and estimate the parameters accordingly. The prior distributions of 6o and 61 can be
obtained from the physics-based model. Performing linear regression on the physics-
based model yields the mean and standard error for 6o and 6:. Discretizing these
variables appropriately allows for the construction of prior distributions for discrete BN.
The parameters are assumed to follow the normal distribution. During the calibration
process, the posterior distributions for 6o and 61 were obtained using the data from
Figure 5 and the EM algorithm. The posterior distributions are significantly different
from the prior distributions. The difference between the simulation results and the
monitoring data caused a large deviation from the prior distributions. The monitoring
data showed that corrosion rate is more closely related to TOW than chloride
accumulation; however, the physics-based model showed the opposite. Moreover, the
dependence of corrosion rate on chloride accumulation showed a difference between
the physics-based model and the monitoring data. Therefore, the calibrated model
complemented the shortcomings of the physics-based model with the monitoring data.
Table II shows the corrected parameter values.



TABLE II. PARAMETERS FOR POSTERIOR DISTRIBUTION

Variable Distribution Prior (Mean, SD) Posterior (Mean, SD)
0o Normal 0.3759,0.1750 0.9262, 0.7351
0, Normal 0.4954,0.1764 1.0149, 0.5464
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Figure 7. Calibrated model

Prediction for maintenance optimization

In risk analysis that requires extensive calculations, a metamodel is necessary. The
calibrated model presented earlier can be utilized as a metamodel. The meta-model
exhibits steeper corrosion rate increases than the physics-based model, indicating a
faster increase in risk. Therefore, utilizing such a metamodel enables the selection of
more conservative maintenance plans and inspection cycles, which can optimize
maintenance policies.

CONCLUSION

In this study, improvement was made in the atmospheric corrosion model via
updating the physics-based model using corrosion monitoring data. To implement
calibration, the BN was utilized to estimate the parameters of the dose-response
relationship between the physics-based model and monitoring data. After the model
calibration process, the posterior parameter distributions of the physics-based model
were significantly different from the priors due to the differences in the dependency of
corrosion rate on TOW and CI". The predictability was improved because the real world
reflected the calibrated model. The structural risk analysis using the calibrated model is
expected to enable more optimized maintenance planning than only the physics-based
model.
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