
ABSTRACT 

Atmospheric corrosion is a significant challenge the aviation industry faces, as it 
greatly affects the structural integrity of aircraft operated long after introduction. 
Therefore, an appropriate corrosion deterioration model is required to predict corrosion 
problems. However, the deterioration model is challenging to use in practice due to the 
limited data available for parameter estimation; thus, high uncertainty in prediction is 
unavoidable. To address these challenges, a method of integrating a physics-based 
model and a data-driven model on a Bayesian network (BN) is presented. The 
atmospheric corrosion environment is modeled using COMSOL, and a BN is 
constructed. Model calibration is performed using the collected atmospheric corrosion 
monitoring data at aircraft parking areas. The calibration approach improves upon 
existing models by incorporating actual environmental data, making it more accurate 
and applicable to real-world scenarios. Using the calibrated model, a method for 
optimizing the inspection and maintenance (I&M) scheme is described. In conclusion, 
our research emphasizes the importance of precise corrosion models for predicting and 
managing atmospheric corrosion in aircraft structures. BN that integrates physics-based 
and experimental monitoring data can improve the accuracy and applicability of these 
models, ensuring the safety and structural integrity of aircraft. And also, the results open 
up new avenues for future research, such as incorporating additional data sources to 
improve the accuracy of corrosion models further. 

INTRODUCTION 

Atmospheric corrosion is a time-dependent deterioration mechanism that 
significantly affects the structural integrity of equipment operated for long periods of 
time. According to Findlay and Harrison [1], more than 20% of aircraft component 
failures are related to corrosion. Corrosion accelerates the aging of aircraft structures by 
interacting with other deterioration mechanisms such as fatigue cracking and stress 
corrosion cracking. 
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The factors that contribute to corrosion are the type of metal, potential difference, 

atmospheric corrosion environment, etc [1]. Since aircraft are operated in external 

environments for extended periods of time, they are greatly affected by atmospheric 

corrosion. ISO 9223 identifies relative humidity, chloride accumulation rate, and sulfur 

dioxide accumulation rate as the main factors that affect material corrosion in 

atmospheric environments [2]. 

To prevent corrosion, an appropriate corrosion deterioration model is necessary. 

However, due to the limited availability of data for parameter estimation, as well as the 

high level of uncertainty in predicting results, the corrosion deterioration model is 

difficult to utilize in practice. Previous studies have modeled multiple physical 

phenomena using commercial software such as COMSOL Multiphysics [3, 4]. The 

previous models include several assumptions and has limitations in representing the 

corrosion environment of specific regions because the modeling results were verified 

by conditions constructed in a laboratory. 

This study proposes a method of combining a physics-based model with a data-

based model. The combined model can provide a metamodel for risk analysis. In chapter 

2 of this paper, the preparation process for obtaining an improved atmospheric corrosion 

environment model is described. Experimental measurement [5] and simulation 

methods are presented. The calibration method using BN and the overall research 

procedure are also described. Chapter 3 presents and discusses the results of 

atmospheric corrosion monitoring. It also covers the simulation results and the changes 

in the calibrated model using BN. Finally, chapter 4 presents the conclusions and 

limitations of the study, as well as suggestions for future research directions. 

 

 

EXPERIMENTAL 
 

Atmospheric corrosion monitoring 
 

In reference to the USAF case study [6], a set of atmospheric corrosion monitoring 

equipment and specimen cards were designed to measure the corrosion rate, relative 

humidity, and chloride accumulation of key metallic materials (Fig. 1). The specimen 

cards consist of a total of six metallic specimens, including silver (Ag) for chloride 

accumulation measurement, copper (Cu), aluminum alloys (AA2024, AA6061, 

AA7075), and carbon steel for corrosion rate monitoring. The specimen cards were 

installed at aircraft parking areas in 13 air force bases nationwide and were retrieved 

and analyzed by the Aero Technology Research Institute. 

The retrieved specimens were cleaned to remove foreign substances and the 

corrosion rate was calculated according to ASTM G1 [5, 7]. For carbon steel specimens, 

the weight before and after cleaning was measured, and the specimen was repeatedly 

rinsed with 50 vol% hydrochloric acid solution for 2 minutes, with the weight measured 

after each rinse. The mass loss due to corrosion was estimated by determining the point 

at which the slope of the graph changes since the degree of reaction between the 

corroding material and the substrate is different. 

 

 



 
Figure 1. Corrosion monitoring set and details of a specimen card 

 

 

The relative humidity was measured using a temperature and humidity sensor 

(Testo-174H). The time of wetness (TOW), which is the duration when the temperature 

exceeds 0℃ and the relative humidity exceeds 80%, was calculated. The annual 

chloride accumulation was estimated using X-ray photoelectron spectroscopy (XPS) 

analysis of the sample surface [5]. Specifically, the depth of etching was calculated by 

multiplying the exposure time of the ion beam by the etching rate. The etching volume 

was calculated by multiplying the etching depth by the etching area, and the etching 

mass was calculated by multiplying the silver density. Finally, the chloride 

accumulation during the exposure period was calculated using the vertical composition 

and distribution analysis (Depth profiling) results of each element. The calculation 

method involves some error due to the variation in composition with depth in the sample. 

However, it was deemed valid as it showed a relatively high correlation with the 

chloride accumulation of the same sample measured using other quantitative methods 

such as XRD and Coulometric Reduction [5, 8]. 

 

 

Atmospheric corrosion modeling 

 

The atmospheric corrosion environment was modeled in one dimension using the 

simulation method (Figure 2). The boundary 1 represents flux boundary condition due 

to electrochemical reactions occur on the iron surface (electrode surface), and boundary 

2 is set as the constant electrolyte potential. The following reactions were considered on 

the electrode surface: 
 

𝐹𝑒 → 𝐹𝑒2+ + 2𝑒− (1) 

 

2𝐻+ + 2𝑒− → 𝐻2 (2) 

 

𝑂2 + 2𝐻2𝑂 + 2𝑒− → 4𝑂𝐻− (3) 

 
Eq. (1) represents the oxidation of iron and Eq. (2) and (3) are hydrogen evolution and 

oxygen reduction reactions, respectively. 

 

 



 
Figure 2. Scheme for physics-based modeling 

 

 

To implement electrochemical reactions in the model, the secondary current 

distribution interface is utilized. The secondary current distribution interface explains 

the activation loss caused by reactions at the electrode surface. The relationship between 

charge transfer and overpotential can be expressed by the following two equations. 

The corrosion current density is expressed by the Butler-Volmer equation. 

 

𝑖𝑐𝑜𝑟𝑟 = 𝑖0 (𝑒𝑥𝑝 (
𝛼𝛼𝐹𝜂

𝑅𝑇
) − 𝑒𝑥𝑝 (

−𝛼𝑐𝐹𝜂

𝑅𝑇
)) (4) 

 

where, icorr represents the corrosion current density, i0 is the initial current density, αα 

and αc are the forward (anodic) and backward (cathodic) transfer coefficients, 

respectively. F is Faraday's constant, which is 96,485 C/mol, and R is the gas constant, 

which is 8.314 J/Kmol. T is the temperature. Here, η represents the activation 

overpotential and can be expressed using the Tafel equation. 

 

𝜂 = 𝛽 𝑙𝑜𝑔 (
𝑖

𝑖𝑐𝑜𝑟𝑟
) (5) 

 

where β is the Tafel slope (unit: voltage). 

In summary, the secondary current distribution interface calculates the current and 

potential distribution in an electrochemical cell, assuming that the electrolyte layer has 

a constant electrical conductivity. Therefore, charge transfer satisfies Ohm's law. Under 

the assumption that the conductivity is constant, the changes in the electrolyte 

composition due to electrochemical reactions can be ignored, and ion movement can be 

considered to contribute only to changes in the current in the electrolyte [9]. 

 

𝐼 =
𝐸

𝑅
(6) 

 

where, E refers to the electric field and R refers to the gas constant. In addition, changes 

in the electrical conductivity and thickness of the electrolyte layer due to relative 

humidity and salt accumulation density were also taken into account [4]. Above all, the 

simulation process allowed us to obtain a physics-based model for atmospheric 

corrosion. 

 

 

Calibration using Bayesian network 
 

BN are probabilistic models represented by directed acyclic graphs, which model 

the joint probability mass function (PMF), p(x), of a set of random variables X. As the 

number of variables in X increases, the space of X, i.e., the number of outcome states  

                           

                         

                                

                             

                                               



 
Figure 3. Procedure for research 

 

 

for which p(x) must be computed, increases exponentially. However, BN modeling 

allows for efficient computation by representing the joint probability distribution as a 

product of local (conditional) distributions for each variable.  

An expectation-maximization (EM) algorithm is commonly utilized for inferring 

parameters when the available data is incomplete. The EM algorithm consists of two 

steps: the E-step and the M-step. In the E-step, an estimate of the probability distribution 

over the possible missing data is computed using the current or previously estimated 

parameters. This is achieved by selecting a function, gt, which reduces the objective 

function log Pr(x;z) at all points. In the M-step, the maximum likelihood method is 

employed to search for the local maximum of gt. The two steps are repeated until the 

parameters converge, yielding the global maximum of the objective function. Since the 

objective function is equivalent to gt, the following relationship holds true: 

 

log Pr(𝑥; 𝑧̂(𝑡)) = 𝑔𝑡(𝑧̂(𝑡)) ≤ 𝑔𝑡(𝑧̂(𝑡+1)) = log Pr(𝑥; 𝑧̂(𝑡+1)) (7) 

 

As a result, the objective function will consistently increase with each iteration of 

the EM algorithm. 

 

 

Framework 

 

The research methodology is composed of three main steps, as shown in the 

flowchart (Fig. 3). Firstly, a physics-based model for atmospheric corrosion 

environment is developed. The implemented model is then parameterized into a linear 

model for TOW and chloride accumulation. Here, the model is represented by 

parameters (θ0, θ1). Model calibration is performed using the monitoring data from the 

study by Lee et al. [5]. The calibration procedure involves constructing dose-response 

functions (dose-response functions) using BN. The parameters (θ0, θ1) then are updated 

during the calibration process.  Finally, the calibrated model can be used to perform a 

risk analysis and compare the results with those obtained from the previous analyses. 

 

 

RESULTS AND DISCUSSION 
 

Atmospheric corrosion monitoring 

 

The geographic environment is divided into coastal and inland areas and is 

combined with the regime of tides and currents. In Table I, bases with a hat(^) 



symbol(𝐴1̂, 𝐴2̂, 𝐵2̂ and 𝐵4̂) have roofs installed over their revetments. The revetment of 

Base 𝐴1̂ has a high roof installed. 

The monitoring data for atmospheric corrosion environment, including distance 

from the coast, TOW, chloride accumulation, and carbon steel corrosion rate, are shown 

in Figure 4. TOW and carbon steel corrosion rate exhibit a positive correlation (Pearson 

correlation coefficient of 0.6), while chloride accumulation and carbon steel corrosion 

rate show a strong correlation (Pearson correlation coefficient of 0.9). TOW and rainfall 

show a weak but statistically significant correlation. 

 

 

Atmospheric corrosion modeling 

 

The results of simulations are shown in Figure 5. The physics-based model is 

obtained by the linear regression of simulation results. From the regression model, the 

annual corrosion rate of the physical-based model is proportional to the TOW and 

inversely proportional to the Cl- accumulation. 

 

 
TABLE I. AIR BASES CATEGORIZED BY GEOGRAPHICAL LOCATIONS AND TYPES 

OF AIRCRAFT PARKING AREA 

  v    m                   

R v  m    𝐴1̂, 𝐴2̂ 𝐵1, 𝐵2̂, 𝐵3,  𝐵4̂ 

Sh      𝐶1, 𝐶2, 𝐶3 𝐷1, 𝐷2, 𝐷3, 𝐷4  

 

 

 
(a)                                                                 (b) 

 
(c)                                                                 (d) 

Figure 4. Comparison of atmospheric corrosion monitoring data of ROKAF showing (a) distance to 

sea, (b) time of wetness, (c) chloride accumulation rate, and (d) steel corrosion rate 

 

 



 
Figure 5. Atmospheric corrosion modeling results with linear fitting 

 

 

 
Figure 6. Bayesian network for calibration 

 

 

Calibration and validation 

 

Figure 6 illustrates the calibration process to implement a dose-response function 

and estimate the parameters accordingly. The prior distributions of θ0 and θ1 can be 

obtained from the physics-based model. Performing linear regression on the physics-

based model yields the mean and standard error for θ0 and θ1. Discretizing these 

variables appropriately allows for the construction of prior distributions for discrete BN. 

The parameters are assumed to follow the normal distribution. During the calibration 

process, the posterior distributions for θ0 and θ1 were obtained using the data from 

Figure 5 and the EM algorithm. The posterior distributions are significantly different 

from the prior distributions. The difference between the simulation results and the 

monitoring data caused a large deviation from the prior distributions. The monitoring 

data showed that corrosion rate is more closely related to TOW than chloride 

accumulation; however, the physics-based model showed the opposite. Moreover, the 

dependence of corrosion rate on chloride accumulation showed a difference between 

the physics-based model and the monitoring data. Therefore, the calibrated model 

complemented the shortcomings of the physics-based model with the monitoring data. 

Table Ⅱ shows the corrected parameter values. 

               

             

              

          



TABLE Ⅱ. PARAMETERS FOR POSTERIOR DISTRIBUTION 

V        D            P      M   , SD  P          M   , SD  

θ0 Normal 0.3759, 0.1750 0.9262, 0.7351 

θ1 Normal 0.4954, 0.1764 1.0149, 0.5464  

 

 

 
Figure 7. Calibrated model 

 

 

Prediction for maintenance optimization 
 

In risk analysis that requires extensive calculations, a metamodel is necessary. The 

calibrated model presented earlier can be utilized as a metamodel. The meta-model 

exhibits steeper corrosion rate increases than the physics-based model, indicating a 

faster increase in risk. Therefore, utilizing such a metamodel enables the selection of 

more conservative maintenance plans and inspection cycles, which can optimize 

maintenance policies. 
 

 

CONCLUSION 
 

In this study, improvement was made in the atmospheric corrosion model via 

updating the physics-based model using corrosion monitoring data. To implement 

calibration, the BN was utilized to estimate the parameters of the dose-response 

relationship between the physics-based model and monitoring data. After the model 

calibration process, the posterior parameter distributions of the physics-based model 

were significantly different from the priors due to the differences in the dependency of 

corrosion rate on TOW and Cl-. The predictability was improved because the real world 

reflected the calibrated model. The structural risk analysis using the calibrated model is 

expected to enable more optimized maintenance planning than only the physics-based 

model. 
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