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ABSTRACT 

 

Wire rope is one of the most significant parts in guaranteeing the safety and health 

of infrastructures and practical structures. However, the defect frequently occurs when 

the wire rope is operating under sophisticated conditions, which makes the servicing 

wire rope and its related structures full of risk. Although many nondestructive testing 

techniques have been considered to solve the defect inspection and structural health 

monitoring (SHM) problems for wire rope, the inspection and monitoring results are 

greatly influenced by the testing environments. To deal with the challenges of 

quantitative wire rope nondestructive evaluation and SHM, a new variational mode 

decomposition and spectrum estimation method is proposed here. The preliminary 

signal analysis for typical wire broken defects under different wire rope operating speed 

is conducted in time, frequency and statistical domain. Then, a new quantitative wire 

rope evaluation method based on different defect signals features analysis, principle 

introduction, spectrum estimation and comparison with other mode decomposition 

techniques is presented, which demonstrate the feasibility and application promise for 

wire rope SHM and accurate evaluation. 

INTRODUCTION 

Wire rope is widely applied in various practical applications, such as the harbor, 

bridge, elevator, mine and energy exploration related fields, which is playing a 

significant role in guaranteeing the safety of infrastructures and human lives. However, 

the defect frequently occurs when the wire rope is operating under sophisticated 

conditions [1], such as the impact, shock, fatigue, wear and corrosion. Consequently, 

the local fault (LF) including the wire broken, crack and loss of metallic area (LMA) 

damage such as the surface wear have become the main forms of wire rope defect, which 

makes the servicing wire rope and its related structures full of risk [2]. Consequently, 

wire rope defect detection and health state monitoring are the key to ensure safety. 

Although various nondestructive testing method including the magnetic flux leakage 

testing [3], infrared thermography imaging [4] and machine vision-based techniques [5] 

are applied to defect inspection and structural health monitoring (SHM) problems [6] 

for wire rope, the inspection and monitoring results are greatly influenced by the 

interference of the surrounding environment, wire rope structures and operating 

conditions. Thus, a plenty of signal processing and pattern recognition methods [7] are 

proposed and reported, such as the time-frequency transform [8], wavelet denoising [9], 

image recognition [10], nonlinear mode decomposition [11, 12] and spectrum 

estimation [13], as well as machine learning and deep learning methods [14]. However, 

most of these methods are invalid for online wire rope signal processing when the wire 

rope defect inspection signals resemble to each other and small sample data is limited. 

To solve these challenges above, and quantitatively evaluate wire rope working 

condition, a new variational mode spectrum estimation for wire rope defect signal 

recognition method is proposed here, which has great potential of wire rope health 

monitoring in practical applications.  

SIGNAL ANALYSIS 



Four groups of typical wire rope testing signals labeled as s1 to s4 are obtained and 

shown in Figure 1, where a magnetic flux leakage testing detector is applied to sense 

two continuous broken wires with the nominal diameter of Φ 32 mm and single wire 

diameter of Φ 1.5 mm. Specifically, these inspection signals are acquired under the 

online rotating wire rope, which is driven by a motor and frequency converter, and the 

rotating frequency is set as 5 Hz, 10Hz, 15Hz and 20Hz for s1 to s4, separately.        

 

 
Figure 1. Typical wire rope defect inspection signals of s1 to s4. 

It can be seen from these time series signals expressed in Figure 1 that, all of these 

defect inspection signals are featured with two similar prominent longitudinal mutation 

peaks, and its usually hard to distinguish these signals and their working conditions just 

by their amplitudes. Further three-dimensional (3D) spectrum analysis for s1 to s4 from 

the perspective of frequency, phase and amplitude domain is illustrated in Figure 2, and 

it can also be noted that almost all these four signals have semblable features in phase, 

frequency and amplitude. In other words, it’s almost impossible to identify these similar 

defect inspection signals just by the time domain characterizations.   

 



 
Figure 2. 3D spectrum analysis for wire rope testing signals of s1 to s4. 

Besides, further kernel density estimation for these four signals is also conducted 

and the results are presented in Figure 3, where s1 to s4 are analyzed from the 

perspective of statistics. However, after calculating these signals, we can preliminarily 

find that all these signals are analogously distributed in the two-dimensional (2D) plane, 

which are all expressed as accumulation areas around the central position of (0, 0). As 

the kernel density increases, all the signals are attenuated in amplitude, and s1 to s4 are 

closely resemble to each other and presented as an approximate 2D normal distribution.       

 

 
Figure 3. Kernel density estimation for s1 to s4. 

Owing to that the operating speed or driven frequency of the wire rope is very close 

which may lead to the defect detection signal frequency diverse, the fast Fourier 

transform (FFT) and power spectral density (PSD) calculation results for s1 to s4 are 

also obtained and given in Figure 4. Primarily, the single-sided amplitude spectrum of 

FFT and the frequency response of PSD are presented. All these signals are distributed 

within the frequency band lower than 500Hz, and most of them are gathered near 0 to 

100 Hz. What’s more, it’s still difficult to find obvious difference among s1 to s4 in 

frequency domain by the calculating results shown in Figure 4.       



 
Figure 4. Signal analysis results of FFT and PSD for s1 to s4. 

Therefore, another statistical analysis method for these original wire rope testing 

signals through feature extraction is presented, where the 10 main features describing 

different defect inspection conditions including the enhanced mean absolute value 

(EMAV), average amplitude change (AAC), waveform length (WL), maximum fractal 

length (MFL), enhanced wave length (EWL), kurtosis (KURT), skewness (SKEW), 

slope sign change (SSC), zeros crossing (ZC), log detector (LD) are investigated, and 

the calculating results are expressed in Table I. 

TABLE I. TEN MAIN EIGENVALUES OF WIRE ROPE TESTING SIGNAL 

Feature EMAV AAC WL MFL EWL KURT SKEW ZC SSC LD 

s1 0.4188                           0.0295 177.2405 0.7460 542.9872 31.5024 0.2985 150.00 146.00 0.1371 

s2 0.3966                            0.0389 233.6235 0.9963 621.3383 59.5609 0.7390 204.00 179.00 0.1249 

s3 0.4029                            0.0505 303.2779 1.1280 744.0274 74.3039 2.2312 310.00 326.00 0.1370 

s4 0.4683                            0.0614 368.2151 1.2008 861.2379 86.6561 3.0103 281.00 436.00 0.1886 

Although these eigenvalues are different in numerical values, it’s usually impossible 

to identify their operation conditions just by the single feature. As the pattern 

recognition techniques including the machine learning and deep learning neural network 

fast develop, they have been prevalently applied in the wire rope defect inspection, but 

a more lightweight and less data-dependent method for wire rope working conditions 

monitoring and evaluation is still lacked and desperately needed.   

VARIATIONAL MODE SPECTRUM ESTIMATION 

 

According to the decomposition principle of variational mode decomposition 

(VMD) [15], the wire rope testing signal ( )y t  is decomposed as several accumulation 

of intrinsic mode functions (IMFs) of ( )ks t , which can be expressed as the product of 

an amplitude of ( )kA t and the component ofcos( ( ))k t ,  

( ) ( )cos( ( ))k k ks t A t t=                              (1) 



Where, k is the decomposed mode number, ( )k t is the signal envelope, and the 

constraints of the narrow band distributed wire rope inspection signals are described as,    
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To solve the above problem, an augmented Lagrangian function is built as, 
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Where, α is the penalty coefficient, λ is the Lagrangian multiplier. Then, the 

alternate direction method of multipliers and the Parseval theorem in frequency domain 

are considered to calculate the final results of the decomposed signal as, 
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Owing to that the 1D wire rope signal analysis in the single time and frequency 

domain are difficult in identifying their working conditions especially when these 

signals are semblable, a 2D signal spectrum estimation method is proposed through the 

VMD characterization, and the detailed VMD for wire rope signals is presented in 

Algorithm 1.  

Algorithm 1 Quantitative wire rope evaluation by VMD spectrum estimation 

Step 1 Parameter initialization; 

Step 2 1D signal reconstructed as a 2D matrix; 

Step 3 Compute the halfplane mask for the 2D signal; 

Step 4 Update first mode accumulator, spectrum and central frequency; 

Step 5 Recover full spectrum from the original signal; 

Step 6 Gradient ascent for augmented Lagrangian function mentioned in (3); 

Step 7 Repeat Step 3 to Step 6 until the maximum iteration is reached; 

Step 8 Signal reconstruction through inverse Fourier transform to compute each 

mode; 

Step 9 Return the decomposition modes and spectrum; 

Step 10 Estimate the spectrum enhancement area and build the quantitative 

mathematical relationships evaluating the wire rope working conditions; 

Step 11 Obtain the quantitative wire rope evaluation results. 



Explanatorily, the balancing parameter for data fidelity constraint, the 

decomposition mode number, tolerance of convergence criterion and other parameters 

are first initialized, then 1D original wire rope testing signals are reconstructed as a 2D 

matrix and input of the variational mode decomposition procedure. What’s more, the 

first mode’s VMD spectrum is updated through a wiener filter and its central frequency 

is updated as the spectral center of gravity, meanwhile, the gradient ascent is applied to 

solve the Lagrangian function mentioned in (3). Finally, the inverse Fourier transform 

processed and the mode decomposed signals are reconstructed as a mode spectrum, 

where the spectrum estimated enhancement regions are used to build the quantitative 

wire rope evaluation model. Consequently, the mode decomposed spectrum of the 

original wire rope testing signals of s1 to s4, especially for the first VMD component of 

mode 1 is presented in Figure 5.  

 
Figure 5. Mode decomposition spectrum of s1 to s4. (a) Mode 1 of s1; (b) Mode 2 of s1; (c) Mode 3 of s1; 

(d) Mode 4 of s1; (e) Mode 5 of s1; (f) Mode 6 of s1; (g) Mode 1 of s2; (h) Mode 1 of s3; (i) Mode 1 of 

s4. 

It can be seen from Figure 5 that there is only one spectrum enhancement region for 

mode 1 of s1, and 2, 3, 3 strengthened areas for s2 to s4. As for mode 2 to mode 6 

decomposed from s1 shown in Figure 5(b) to 5(f), these spectrum stripes resemble 

among different modes. Afterwards, the mode 1 for s1 to s4 are mainly considered to 

realize the working condition identification. Besides, comparing these 2D mode 



spectrums of s1 to s4 with that of the original signals shown in Figure 1, it can be found 

that although all these signals have two prominent signal peaks and similar 

characterizations both in time and frequency domain, they can be possibly distinguished 

by the spectrum differences especially by the decomposed time judged by the 

longitudinal value and spectrum enhancement region. Therefore, another groups of wire 

rope testing signals are further investigated, and the typical testing samples of T1, T2 

and T3 are obtained when the inspection wire rope is operating under the frequency 

converter parameter of 25 Hz, 35Hz and 40Hz, separately. Similarly, the original signals 

of T1 to T3 and their corresponding VMD spectrum calculated through the decomposed 

mode 1 are illustrated in Figure 6. Obviously, although these signals are still likewise in 

amplitude, their spectrums are differently distributed, where 3, 4 and 6 spectrum 

enhancement areas in yellow color are respectively appeared. Combining the spectrum 

information mentioned for s1 and s6, a quantitative wire rope working condition 

evaluation model for the frequency converter driving parameter or the wire rope 

operating speed can be preliminarily built. 

  
Figure 6. Mode 1 of signal T1 to T3. (a) Signal T1; (b) Signal T2; (c) Signal T3; (d) Mode 1 of T1; (e) 

Mode 2 of T1; (f) Mode 3 of T1. 

According to the calculating results mentioned above, the relationships between the 

wire rope working condition and the total VMD spectrum enhancement region number 

is presented in Figure 7(a), where a positively related curves between these two 

parameters can be found. Besides, to exactly described their quantitative relationships, 

the weighted number combining the spectrum enhancement region and corresponding 

channel is defined as, 
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Where, Ei is the channel zone of the enhanced spectrum from 10 to 50 with a step 

of 10, ni is the enhanced spectrum distributed within each channel zone, N is the total 

spectrum enhancement region number. Consequently, the relationship between W and 

the wire rope operating speed characterized by the frequency of x can be expressed as a 



polynomial model of (8), Where, x is the frequency converter driving frequency or the 

wire rope operating speed, and the calculated and polynomial function fitted 

relationships between x and W(x) are expressed in Figure 7(b).  
5 4 3 2( ) 0.0002 0.0103 0.2959 4.0005 21.3998 11.9841W x x x x x x= − + − + +       (8)  

 
Figure 7. Quantitative relationship between wire rope operation speed and the VMD spectrum 

enhancement area number. (a) Operation speed with total VMD spectrum enhancement region number; 

(b) Operation speed with weighted number. 

Combining Figure 7(a) and the quantitative relationships mentioned in (8), the wire 

rope working conditions can be exactly monitored just by the defect inspection signals 

for online rotating wire ropes. 

 

COMPARISON AND QUANTITATIVE EVALUATION 

 

To further validate the feasibility of the quantitative wire rope evaluation method, 

T-50 signals acquired under the rotating frequency of 50Hz is considered, and the 

original signal of T-50 and the VMD spectrum of mode 1 is presented in Figure 8.  

   



 
Figure 8. Testing results for T-50 by the new method. (a) Signal of T-50; (b) Mode 1 spectrum for T-50.  

There are totally 8 approximate enhancement areas and the weighted number of 

31.25. Let W(x) = 31.25, then combing the positive relationships expressed in Figure 

7(a), we can obtain that the solution of x = 49.9749. Namely, the absolute error with the 

accurate frequency of 50 is 0.0251 Hz, and the relative error is 0.050113%. Additionally, 

the calculating results of decomposed mode analysis for T-50 through empirical mode 

decomposition (EMD) [11] and the reported variational nonlinear chirp mode 

decomposition (VNCMD) methods [12] are presented in Figure 9. Comparing with the 

proposed method mentioned in Figure 8, the signal enhancement areas calculated 

through EMD and VNCMD are all consistent with the original time series signal of T-

50, which manifests that the EMD and VNCMD are incapable of recognizing the 

working condition and differentiating different wire rope defect signals, while the 

proposed VMD spectrum features estimation method provides a quantitative evaluation 

strategy.  

 
Figure 9. STFT for EMD and VNCMD testing results of and T-50. 

CONCLUSION 

(1) Typical wire rope defect inspection signals are investigated from the perspective 

of time domain, frequency domain and statistics, which manifest that the common 



methods are difficult to recognize their working conditions when these defect signals 

resemble to each other. 

(2) A new VMD spectrum estimation method is proposed for quantitative evaluation 

where the mathematical modeling and comparing results demonstrate the feasibility and 

validity of the method, which is potentially to be widely applied in wire rope defect 

inspection and health monitoring. 
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