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ABSTRACT

Important train component like wheelset bearing endure severe mechanical loads
and alternating stresses for an extended period when the train is in operation. The cracks
due to bearing fatigue are often difficult to detect in time, which is the biggest hidden
problem for train safety. The wayside acoustic detection of train bearing faults plays an
important role in maintaining the safe operation of trains. However, the acoustic signals
collected by the wayside microphones are usually complex, mixed with other irrelevant
signals with strong background noise when in the condition monitoring of wheelset
bearings. Moreover, when the train passes through the detection area at a certain speed,
the microphone picks up the acoustic signal for a short time, which makes it difficult to
obtain accurate fault signal characteristics. Trackside acoustics often uses microphone
arrays to overcome the problem of short sampling time. To diagnose wheelset bearing
faults more effectively with fewer microphones, this paper proposes a wayside acoustic
fault diagnosis method based on improved sparsity Bayesian learning. Advanced sparse
representation (SR)-based approaches usually include two primary stages: recovery of
fault pulses in the time domain and frequency transformation of the estimated signal
envelope. However, any inaccurate signal recovery in the time domain can introduce
the problem of error accumulation in the subsequent frequency transform, which suffers
from the disadvantage of low resolution, especially for short time sampled acoustic
signal. Taking the limitations into consideration, a new algorithm has been developed
by combining the group sparsity and periodic structure of fault pulses with variational
Bayesian inference (VBI) technology. This advanced method effectively extracts the
fault pulse signal, even in the presence of high noise levels, which leads to a significant
enhancement in the fault detection performance. With the aid of this method, in
conjunction with the Doppler distortion preprocessing correction algorithms, the
proposed approach has been successfully applied to the diagnosis of faults in train
trackside acoustic wheelset bearings. The experimental results show that the proposed
method can achieve good performance in fault diagnosis compared with conventional
analysis method, making it more effective to monitor wheelset bearing faults.
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INTRODUCTION

Currently, the lifecycle of key components such as rolling bearings in service on
trains has entered the phase of high risk of failure. Strengthening the research of "train
bearing condition monitoring and fault diagnosis™ technology is of extremely urgent
practical need and of great significance for ensuring the safe operation of urban rail
transit and high-speed rail. Rolling bearings of high-speed trains have the characteristics
of high speed, large load, and strong impact, and are one of the most critical functional
components of trains. The train wheelset bearing’s fault has historically been the
principal cause of train failure [1]. Therefore, performing a fault diagnostic of train
bearing is important. For the fault diagnosis of train bearings, a large amount of research
has focused on some non-disassembled diagnostic methods, such as the oil
measurement method [2-3], hot box method [4-5], on-board vibration signal analysis
method [6-7], acoustic emission [8], and wayside acoustics [9]. The acoustic signal is
generated by the reflection of mechanical waves in the propagation medium due to the
vibration of the internal parts of the train. The acoustic signals triggered by train
bearings range in frequency from 3 Hz to 40 kHz, and their intensity is often
proportional to the acceleration signal in the same direction, so they are sensitive enough
to support the identification of minor fatigue cracks. Comparing different types of
detection methods, the acoustic signals have the characteristics of non-contact, easy to
measure, simple equipment, etc. Currently, there is relatively little research on the use
of acoustic signals for train bearing fault diagnosis, in contrast to the more commonly
used vibration signal analysis. There are three challenging research areas in the study of
wayside acoustic fault diagnosis for train bearings, namely, dealing with multiple
sources, handling strong noise, and managing steep distortion. Numerous researchers
have studied methods for extracting bearing fault signals using vibration signals [10-
12]. Recently, the sparse signal recovery has emerged as a highly effective technique
for bearing fault diagnosis, sparking renewed interest in the field. For example, Wang
et al. [13] proposed reweighted dual sparse regularization method which is combined
framework with an additional [,-norm regularization. Zhou et al [14] developed an
algorithm that utilizes an overcomplete dictionary of Attenuated Cosines (AC) basis,
specifically tailored to closely match the waveforms of bearing faults. While the current
sparse signal recovery techniques for bearing fault diagnosis can deliver exceptional
results, their reliance on the [;-norm as an approximation of [,-norm can cause a
deterioration in algorithm performance. Taking the drawbacks into account, Dai et al
[15] suggested a algorithm that combines group sparsity and periodic structure of fault
pulses with variational Bayesian inference (VBI) technology. This method helps extract
fault pulse signal accurately even in a noisy environment, which leads to a remarkable
improvement in fault detection performance. Based on this method combined with the
Doppler distortion preprocessing correction algorithms, the proposed method is applied
to the fault diagnosis of train trackside acoustic wheelset bearings, which can effectively
diagnose the faults of train wheelset bearings.

PROBLEM STATEMENT AND METHOD

The observed acoustic signals can be described following Equation:
y@® = s + N@® @)



where s(t) represents the fault pulse signal, and N(t) represents the strong noise
background signal. The purpose of fault diagnosis of the train wheelset bearings is to
extract the noise-free pulse signal s(t) from the acoustic signal y (¢) collected by the
trackside. Note that s(¢) has a periodic or quasi-periodic group sparse structure. Assume
that P is the cycle of s(¢) and f; is the sampling frequency, so the number of samples R
in one cycle is as follow:
R = f,P (2
The P is known when the train bearing size is determined, and when the train running
speed is also determined. The following binary vector p can be introduced to represent
the group sparsity of each period.
T
p=|11,..,1,00,..,0 (3)
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If each periodic fault impulse appears in a block of size N, and is followed by N, =
R — N; zeros, G periods are then assembled into a larger group to enforce the periodic

group-sparsity of s(t). Namely,
b= pTapTa“'apT T
¢ (4)
where the nearby G periods share the same sparsity structure, and the optimization
problem can be formulated as follows:

min 21l y(0) = s(0) 13+ AP b O 5; ) + uNNi(s))  (5)

where ;i = [Si, Sis1, -» Si+rg—1]"» and © denotes Hadamard product, p is another
regularization parameter, ¢ (-) is a sparsity penalty function. Then a P-GSL algorithm
for bearing fault diagnosis is proposed using the SBL framework. Finally, the Bayesian
Formulation and VBI-Based Inference can be calculated [15].

EXPERIMENTS AND RESULTS

This study collected a large amount of acoustic signal data under various operating
conditions and failure locations of train wheelset bearings at different speeds, as shown
in Figure 1. During the acoustic signal acquisition process of the laboratory wheelset
bearings, the microphone was positioned as close as possible to the wheelset bearing
seat to minimize sound signal attenuation. The recorded audio was used to simulate the
sound emitted by a train wheelset bearing when it fails during on-site testing, as known
that trains with known bearing issues cannot operate for safety reasons. Experiment 1
involved simulating the acoustic testing of bearing faults on a roadside as shown in
Figure 2. A Bluetooth speaker was mounted on the door of the car, and when the driver
operated the car at a specified set of speeds, the Bluetooth speaker was connected to the
computer via Bluetooth and played the bearing-damage audio recorded in the laboratory,
with the corresponding rotating speed. Figure 3 shows the time domain diagram of data
collected by roadside microphone array under the condition of a car running at a speed
of 30km/h. At this time, the fault audio played by the speaker is collected by the
laboratory wheelset bearing outer race fault at a speed of 175RPM, the corresponding
fault frequency is 21.2Hz. Figure 4 shows the effectiveness of the periodic group sparse
learning method in the diagnosis results. Compared with other methods, it can clearly
diagnose the outer ring fault of the wheel set bearing, and the second harmonic of the
outer race fault frequency and high subharmonics are evident.
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Figure 3. Time domain diagram of data collected by roadside microphone array
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Figure 4. Fault diagnosis results of different methods after calibration (a & b) envelope analysis method.
(c & d) Periodic group sparse learning. (e &f) Enhanced sparse periodic lasso. (g & h) Group sparse
learning method. (I & J) base pursuit decomposition method

Experiment 2 involved field test of the trackside acoustic train bearing fault diagnosis
as show in Figure 5. Figure 6 shows the damaged audio of the outer ring when the
speaker is playing while the subway train is hovering. The acoustic signals collected by
the six microphones beside the track. When the train passes through the trackside
microphone array at a constant speed, the bearing damage signal collected by each
microphone is very short-lived, because the acoustic signal of the bearing fault gradually
weakens after the train passes by, so to further compare the effectiveness of the
algorithm 1s data of the above-mentioned collected acoustic signal is intercepted, with
a total of 20k samples. The comparison of the fault diagnosis results of the 1s acoustic
data of the wheelset bearing is shown in Figure 7. It can be clearly seen that the periodic
group sparse learning method is more clear than other algorithms in diagnosis results,
and high-order harmonic components can also be clearly seen, so the P-GSL method is
effective in the application of trackside acoustic fault diagnosis.
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Figure 5. Field test of the trackside acoustic train bearig fault dignosis.
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Figure 6. Time domain diagram of data collected by trackside microphone array
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Figure 7. Fault diagnosis results of different methods after calibration (a & b) envelope analysis method.
(c & d) Periodic group sparse learning. (e &f) Enhanced sparse periodic lasso. (g & h) Group sparse
learning method. (I & J) base pursuit decomposition method
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Figure 8. Time domain diagram of data collected by trackside microphone array and lasers
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Figure 9. Fault diagnosis results of outer race of wheelset bearing based on trackside acoustics at 20km/h
speed of Metro train

To further verify the effectiveness of this diagnostic algorithm, Figure 8 shows the
measured data of the trackside microphone array under the condition of a subway train
at a speed of 20km/h. The infrared laser shown in the figure is used to locate the position
of the wheel set bearing. Figure 9 shows the fault diagnosis results of the outer race of
the trackside acoustic wheelset bearing under the speed of 20km/speed of the subway
train. The fault frequency and the second harmonic of the outer ring are clearly seen,
and the fault frequency value currently matches the calculated frequency value, once
again verifying the effectiveness of the algorithm application.



CONCLUSION

Prior to conducting the bearing fault diagnosis, first to perform Doppler correction

as a data preprocessing step on the acoustic signals obtained through trackside acoustics.
The periodic group sparse learning method has proven to be effective for diagnosing
faults in wayside acoustics.
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