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ABSTRACT

Sensor faults in structural health monitoring (SHM) systems may occur due to
aging, exposure to harsh weather conditions, manufacturing defects in hardware
components, damage during installation or operation, and issues with data transmission.
If undetected, sensors faults may result in inaccurate or incomplete sensor readings,
which may significantly impact the accuracy, reliability, and performance of SHM
systems. As a result, fault diagnosis in SHM systems may help improve the accuracy,
reliability, and performance of SHM systems. However, most fault diagnosis
approaches for SHM only consider single-fault occurrence, which may oversimplify
actual fault occurrences in real-world SHM systems, where sensor faults may occur
concurrently in multiple sensors. To extend fault diagnosis in SHM towards concurrent
sensor faults in multiple sensors, this paper presents an adaptive fault diagnosis
approach based on analytical redundancy. The approach encompasses four steps, (i)
initialization (ii) fault detection, (iii) fault isolation and (iv) fault accommodation, using
correlated data from multiple sensors of an SHM system. The proposed fault diagnosis
approach is validated using data recorded using a real-world SHM system. The results
show the high accuracy, reliability, and performance of the proposed approach in
detecting concurrent sensor faults in real-world SHM systems.

INTRODUCTION

Structural health monitoring (SHM) aims to assess the condition and to estimate the
lifetime of civil infrastructure through non-destructive evaluation based on data
recorded by sensors (“sensor data”) [1]. The goal of SHM, representing a testing
strategy that complements traditional nondestructive testing, is to reduce maintenance
expenses through providing insights into the structural condition of civil
infrastructure [2]. Sensors in SHM systems may encounter faults that may affect the
accuracy, reliability, and performance of the monitoring systems. Faults may result from
various causes, such as hardware or software malfunctions, power outages,
environmental factors, or signal interferences [3]. The most common sensor faults are
bias, complete failure, complete failure with noise, gain, drift, and outliers [4].
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Fault diagnosis (FD) approaches have been developed to detect, isolate, identify,
and accommodate sensor faults in monitoring systems, including SHM systems [5]. FD
for SHM has been based on either physical or analytical redundancy. Physical
redundancy involves installing multiple sensors on infrastructure and using majority-
voting logic to determine whether a sensor is faulty or not [6]. However, the high cost,
power consumption, and maintenance requirements associated with physical
redundancy approaches have fueled analytical redundancy approaches [7]. Analytical
redundancy relies on mathematical models to describe a system by making use of
redundant information in sensor data. In analytical redundancy approaches, fault
detection relies on residuals between sensor data and corresponding “virtual outputs”,
estimated by mathematical models [3]. The residuals are evaluated using threshold logic
or hypothesis testing for fault detection [8].

Mathematical models for analytical redundancy in FD are frequently based on
artificial intelligence. Examples include multilayer neural networks that have been used
for fault detection in mechanical components of wind turbines [9] as well as artificial
neural network (ANN) models embedded in wireless sensor nodes for decentralized
detection and isolation of sensor faults both in the time domain and in the frequency
domain [7,10]. ANN models have also been combined with convolutional neural
networks, performing fault identification, thus achieving full FD [11]. However, the
analytical redundancy approaches mentioned above for SHM are limited to diagnosing
sensor faults that occur in individual sensors at different times [12]. This limitation
restricts the applicability in real-world SHM systems where simultaneous sensor faults
in multiple sensors may occur (“‘concurrent sensor faults”).

This paper presents an adaptive FD approach based on analytical redundancy
(AFDAR). The AFDAR approach builds upon previous work, in which artificial neural
networks and signal processing have been proposed for FD in SHM systems [7, 11, 13].
The AFDAR approach achieves FD through a combination of ANN models and moving
averages of individual sensor data to detect, isolate, and accommodate sensor faults in
multiple sensors. Fault identification, being independent of single-fault or multiple-fault
occurrence and having been effectively addressed in previous work [11], is excluded
from this study. The rest of the paper is organized as follows: First, the AFDAR
approach is illuminated. Then, the validation of the AFDAR approach is presented, and
the results of the validation test are analyzed. The paper concludes with a summary and
an outlook on future work.

DIAGNOSIS OF CONCURRENT SENSOR FAULTS IN SHM SYSTEMS

This section introduces the design and implementation of the AFDAR approach,
which comprises four steps: (i) initialization, (ii) fault detection, (iii) fault isolation, and
(iv) fault accommodation. Figure 1 illustrates a flowchart of the workflow of the
AFDAR approach. In what follows, the model used for analytical redundancy is briefly
explained, and the four steps of the AFDAR approach are discussed.
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Figure 1. Flowchart of the AFDAR approach.

Artificial neural networks represent a class of artificial intelligence models, used for
mapping input data with output data, both known a priori and collectively referred to as
“labeled data”. The layout of a typical ANN includes an input layer, one or several
hidden layers, and an output layer, as shown in Figure 2. Each layer comprises nodes,
referred to as “neurons”, which accept input data from previous neurons via connections
(“synapses”) and produce outputs, termed “activations”, using the input data and an
activation function. The mapping result of the ANN (“prediction”) is provided in the
output layer. Training the ANN models involves adjusting the weights of the synapses
until the prediction error (difference between prediction and output data) drops below a
predefined threshold, the weights being adjusted according to the “learning rate”.

Input Hidden Hidden Output
layer layer 1 layer | layer

Figure 2. Layout of a typical artificial neural network.



1. Initialization: The initialization step starts with exploring the correlations in the
sensor data to identify a set of k “correlated sensors”. Then, sensor data, recorded by
the correlated sensors, fi—(t) is “cleaned”, i.e. if sensor data from an individual
sensor is missing at a specific time window, the same time window is neglected in
all correlated sensors. Next, sensor data from the correlated sensors data is
normalized to avoid extreme values in activations that would hinder the training
process, using a minimum-maximum normalization. Upon being normalized, the
sensor data is used to train ANN models. One ANN model M is designed and trained
for each correlated sensor i (i = 1...k). For training the ANN model M;, sensor data
from the correlated sensors (excluding sensor i) is used as input data, while sensor
data fi(t) from sensor i is used as output data. Upon completing training, the model
Mi is capable of yielding predictions fi(t) for sensor i. The training threshold y is
established by the root mean squared error (RMSE) value & between the predictions
/i(t) and the sensor data fi(t), as described in Equation 1.
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2. Fault detection: Upon completing the initialization, newly recorded sensor data is
input into all ANN models. If faults occur in r sensors (where 1 <r <Kk), the residuals
between the actual sensor data and predictions of models My (where n = 2...r) are
expected to exceed y, which triggers a fault detection. The time at which y is violated
is noted as the “fault time stamp” t,. Since the faulty sensor data fa(t) is also utilized
as input to the s models My (where v =1...s and r + s = k) of the unaffected sensors,
the virtual outputs of the My models are contaminated, yielding & values that exceed
y as well. Therefore, fault isolation requires further analysis of the sensor data on an
individual sensor level, using the fault time stamp to, which represents the knowledge
transferred to the next step.

3. Faultisolation: Following fault detection, a time window N is determined based on
to. Then, the moving average (MA) values #; of p data points ujj (j = 1...p, p<N) are
computed for sensor i. The window must have adequate length N (to — N/2, to + N/2)
around t, to ensure reliable tracking of the MA. Gradual or abrupt changes in the ;i
values indicate sensor faults. As a result, discrepancies between MA values #; and a
fault isolation threshold ¢ from time to forward indicate faulty sensor data of sensor i.
Once fault isolation is completed and the faulty sensors are identified, the ANN
models adapt to the new conditions of the SHM system, as described in the next step.

4. Fault accommodation: Following fault isolation, the ANN models adapt to the new
conditions of the SHM system as follows:

a. Sensor data of the r correlated sensors that have been diagnosed as faulty are
removed from the ANN input layers of all models. As a result, the architectures
of the ANN models are modified and retrained to yield predictions for the faulty
Sensors.

b. Retraining uses sensor data prior to to. Thereupon, the predictions of the Mn (n =
2...r) models are used to replace the faulty sensor data.



The threshold values y and ¢ depend on the type of data recorded by the SHM system
and are thus application-specific. The validation of the AFDAR approach using sensor
data from a real-world SHM system is presented in the next section.

VALIDATION OF THE AFDAR APPROACH

In this section, the validation test of the AFDAR approach is presented along with
the results of the test. The validation test is conducted using sensor data recorded by a
real-world SHM system. The SHM system is installed on a double-track composite
railway bridge located in Germany. The bridge consists of two parallel steel trusses
supporting a 45 cm thick reinforced concrete (RC) slab. The bridge consists of 15 spans,
each 58 m long — except the edge spans, which are 57 m long — and has a total length of
868 m. The deck width is 14.1 m, and the distance between the centroids of the steel
truss girders is 6.2 m. The SHM system comprises temperature sensors, embedded in
the RC slab, of type Pt100, measuring within a range of —35 °C to 105 °C with a
sensitivity of + 0.5 °C. Sensor data from 10 temperature sensors (S1...510) is used for
the validation test, the positions of the sensors being shown in Figure 3.

The temperature measurements used for validation have been recorded over almost
five years with a sampling rate of 1.7 mHz, i.e. one temperature measurement has been
recorded every 10 minutes, with a total of 256,000 measurements recorded by each
sensor. In the initialization step, correlations between the temperature measurements,
recorded over a period of two years, are investigated via correlation analysis. A strong
positive correlation is found, based on the Pearson correlation coefficient, among all 10
temperature sensors (k = 10). Next, the temperature measurements from the correlated
sensors in the SHM system are cleaned and normalized. The number of ANN models is
set equal to the number of correlated sensors (k = 10). Each model predicts the virtual
outputs of one sensor, using temperature measurements from the other nine correlated
sensors in the SHM system as input data. As a result, each ANN model has nine input
neurons and one output neuron; the number of hidden layers and neurons per hidden
layer is determined with different ANN architectures. Before training the ANN models
for FD, the temperature measurements are split into training (80 %) and testing sets
(20 %). The architecture determined for all ANN models is 9-32-64-256-256-1, based
on the lowest RMSE values ¢ (0.09-0.15), with a total training time of approximately
680 s for each ANN model. The fault detection threshold is set to y = 0.15 equal to the
highest RMSE value from training, erring on the side of safety regarding fault detection.
The remaining steps of the AFDAR approach, i.e. fault detection, fault isolation and
fault accommodation, are executed separately.

Figure 3. Cross section of the bridge with embedded temperature sensors.



TABLE I. SENSORS AND NUMBER OF FAULTS DETECTED PER SENSOR
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
0 18 274 0 1 0 0 4,339 0 0

Representing temperature measurements “newly recorded” by the SHM system,
sensor data corresponding to a period of one year, i.e. 52,560 temperature measurements
per sensor, are used as input data to the 10 ANN models. Upon applying the AFDAR
approach, 4,632 faults are diagnosed in the sensor data, as summarized in Table 1.
Figure 4 exemplarily shows the data recorded by the correlated sensors in the SHM
system, focusing on faults detected in sensor S3 and sensor S8. As can be seen from
Figure 4, concurrent faults of sensors S3 and S8 are detected by the AFDAR approach
because the recorded temperature measurements exceed the fault detection threshold. It
should be noted that a total of 274 simultaneous faults occurred in sensors S3 and S8
between December 19 and December 20; however, the focus is only on the
simultaneous faults that occurred in the aforementioned period.

To illustrate the results of the approach for concurrent real-world sensor faults, the
sensors S3 and S8 are analyzed in more detail between December 19 and December 20.
Fault detection is performed when the residuals between the temperature measurements
of sensors S3 and S8 and the virtual outputs of models M3 and Mg exceed the fault
detection threshold y = 0.15. Fault isolation is then performed using the concurrent fault
time stamp to in both sensors S3 and S8, determined at t, = 01:20 on December 19. The
fault isolation threshold is set to the accuracy of the temperature sensors 6 = = 0.5 °C.
Because the residuals between the MA values of sensors S3 and S8 and the
corresponding temperature measurements at to exceed the fault isolation threshold ¢, the
faulty sensors are isolated. Finally, fault accommodation is performed: Since both
sensors S3 and S8 are faulty, the models M3 and Mg are adapted by modifying the
architecture of the ANN models through moving sensors S3 and S8 from the input layer
to the output layer; the data recorded before t, is used to train the “adapted” ANN model
Msg. Figure 5 shows the architecture of the adapted ANN model Msg, which predicts
the virtual outputs f3(t) and /3(t) for both sensors S3 and S8.
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Figure 4: Comparison of temperature measurements and virtual outputs with the fault threshold.
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Figure 5: Adapted model M3 for sensors S3 and S8.

SUMMARY AND CONCLUSIONS

This paper has presented an adaptive FD approach based on analytical redundancy
(AFDAR) that can reliably diagnose simultaneous sensor faults in multiple sensors of
SHM systems. The approach combines ANN models with moving averages of
individual sensor data to detect, isolate, and compensate for simultaneous sensor faults.
The ANN models are used to predict virtual outputs for each sensor of an SHM system.
To validate the proposed approach, data collected from a real-world SHM system have
been used, showcasing the accuracy, reliability, and performance of FD in detecting,
isolating, and accommodating sensor faults. Furthermore, the AFDAR approach has
proven capable of adapting to the state of the SHM system regardless of the number of
faulty sensors. In summary, the AFDAR approach can be used to ensure the accuracy
of sensor data and thus to maintain the reliability and performance of SHM systems
installed on civil infrastructure. Future work may focus on extending the AFDAR
approach to distinguish between sensor faults and structural damage, as well as on
improving the computational efficiency of the approach.
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