
ABSTRACT 

Indirect structural health monitoring of bridges using vehicle-mounted sensors offers 
a promising approach for the continuous assessment of structures. Full-scale modelling 
of complex structures, however, is computationally intensive. In order to optimize the 
required computational expenses, a two-dimensional simplified numerical model whose 
response resembles the real structure is developed. Euler-Bernoulli frame elements are 
adopted for finite element structural modelling. The transitional Markov Chain Monte 
Carlo technique is then applied for Bayesian finite element model updating. The pro- 
posed approach proved to reach an accurate model for a real-world truss bridge in Japan. 
Vehicle bridge interaction elements are then developed based on the updated simpli- 
fied 2D model. The generalized-α time integration scheme is used to overcome inher- 
ent numerical instabilities. Time-response of the vehicle is evaluated using the devel- 
oped Vehicle-Bridge Interaction (VBI) framework to study the dynamic properties of 
the bridge. The proposed approach significantly reduces the computational efforts in 
extracting time history responses of the moving dynamic system over the bridge without 
sacrificing the prediction accuracy. Time history responses can be processed subse- 
quently to identify damage(s) in the structure, if any. 

INTRODUCTION 

Being crucial components of transportation networks, bridges are of most impor- 
tant civil infrastructure. The majority of them, however, are aging and their mechanical 
properties have degraded over the years. To ensure their reliability, a comprehensive in- 
spection and maintenance strategy is necessary. One of the most promising methods for 
bridge health monitoring is the VBI-based (Vehicle Bridge Interaction) approach which 
aims to extract the mechanical properties of the bridge from the dynamic coupling be- 
tween the bridge and the passing vehicle. The vehicle shall be equipped with some 
sensors, generally accelerometers, and usually on its axles. It can, therefore, be regarded 
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both as an exciter and receiver [1]. Having passed over the bridge, the vehicle response
will contain informations about dynamic characteristics of the bridge structure. This
methodology, i.e. extraction of the dynamic properties of bridge structure from the dy-
namic response of the passing vehicle, is called “drive-by inspection” or “indirect health
monitoring” [2]. The drive-by approach offers significantly more practical solutions in
terms of mobility, economy, and efficiency and eliminates the necessity of installing a
large number of sensors on the structure. It can be easily transferred to and tailored for
another bridge [1,3]. Furthermore, it facilitates periodic condition monitoring of bridges
even under the operating condition. It is, therefore, well suited for long-term continuous
condition monitoring of large-scale structures.
Such methodologies rely on numerical models along with data mining / signal-processing
techniques. Numerical models, such as the finite element method (FEM), have been
widely utilized for monitoring structures and evaluating their serviceability. However,
model-predicted responses may differ from actual ones due to uncertainties in connec-
tion, boundary conditions, section geometrics, and material properties [4]. Finite Ele-
ment Model Updating (FEMU) provides an emerging technique that can calibrate un-
certainties associated with the FE model and reduce numerical simulation errors. The
FEMU process optimizes the calibration of the numerical model according to the actual
behavior of the structure to produce more accurate and reliable results [5]. However, the
development of algorithms for structural model updating is still an active research area
in structural dynamics.
FEMU is generally described as an inverse problem that can be broadly categorized as
deterministic or probabilistic. Probabilistic model updating provides a more versatile
technique for handling uncertainties and complexities [6–8]. Bayesian inference is also
considered one of the most powerful and well-established methodologies for probabilis-
tic finite element model updating, system identification, and damage detection [6,8–10].
This approach requires the evaluation of complex multidimensional integrals, which
typically do not have analytical solutions. It is, therefore, computationally expensive,
particularly when numerous uncertain parameters are involved. Beck and Au [11] pro-
posed an adaptive Markov chain Monte Carlo simulation technique to evaluate the pos-
terior probability density function. This approach combines the simulated annealing and
Metropolis-Hastings (MH) algorithm in a sequential manner so that each target proba-
bility density function is the posterior probability density function considering a larger
extent of data. However, this approach is limited to lower dimensions when the number
of uncertain parameters increases. Ching and Chen [12] proposed Transitional Markov
Chain Monte Carlo (TMCMC), a new sampling algorithm that involves sampling from
a sequence of intermediate probability density functions that converge to a target proba-
bility density function. TMCMC uses reweighting and resampling techniques to gener-
ate the next target probability density function in a sequence, eliminating the difficulty
of kernel density estimation, especially in high-dimensional space [13–15] . TMCMC
brings both efficiency and ease of implementation and has been widely used in recent
structural FE model updating studies. While existing research on Bayesian FE model
updating has focused mainly on numerical models or simple structures like cantilever
beams or shear buildings, few studies have reported on full-scale large civil infrastruc-
tures based on field data. Chang and Kim [16] presented preliminary results of modal
parameter identification and damage detection for a steel truss bridge, and Kim et al. [17]



presented the collected data as well as a 3D structural model. However, model updating
based on a 3D finite element model may require hundreds of days [7]. Therefore, this
study aims to develop a 2D representation of the ADA bridge, a truss bridge in Japan,
that could significantly reduce computational expenses.
The 2D ADA bridge model is developed based on Euler-Bernoulli frame elements. The
TMCMC algorithm is adopted subsequently to update the model minimizing the dif-
ference between measured and calculated modal parameters. Upon having the bridge
structure updated, coupling between the vehicle and the bridge will be included. To
deal with numerical instabilities associated with such a complex structure, the devel-
oped Vehicle-Bridge Interaction (VBI) framework employs the Generalized-α time inte-
gration scheme. This enables efficient computation of time-response for both the vehicle
and bridge, while still maintaining high accuracy in prediction. Time history responses
of the passing vehicle are then utilized to evaluate the dynamic properties of the ADA
bridge. Such responses can be further analysed to identify any possible structural dam-
age. The proposed methodology can be adopted for long-term monitoring of large-scale
structures which requires a huge number of simulations, reducing required computa-
tional efforts.

ADA BRIDGE MODEL

The ADA bridge, located in the Nara Prefecture, Japan, was a simply-supported
steel truss structure. It had been operational for a period of 53 years, from 1959 to
2012. The bridge’s main span was 59.2m in length and had an effective width of 3.6 m.
Figure 1 shows the isometric, elevation, top, and bottom plan of the bridge. The cross-
section dimensions are given in height × width × web thickness × flange thickness. The
bridge members are made of structural steel (density = 7900 kg/m3, elasticity modulus
= 200GPa), while the deck is constructed from concrete slabs (density = 2400 kg/m3,
elasticity modulus = 21GPa).

ADA bridge is modelled using both Euler-Bernoulli frame elements. The bending
natural frequencies and mode shapes are extracted and compared with those of [16]
and [15], see Figure 2and Table II.

It shows that there is a reasonable match between numerical results and field test
data. The extent of error, however, is more considerable in case of higher modes of
vibration. It is due to the fact that Euler-Bernoulli theory can not consider the shear
deformation effect. Despite the meaningful consistency of results with field data, higher
extent of accuracy is required in SHM applications. The existing discrepancies stem
from uncertainties in material properties, boundary conditions as well as deterioration in
cross-section areas / moment of inertia as a result of corrosion / erosion. It is, there-
fore, required to apply a Bayesian finite element model updating scheme to calibrate the
numerical system.

ADA BRIDGE UPDATED MODEL

The methodology of Bayesian model updating is built upon the principles of Bayes’
theorem, which involves the use of conditional probabilities to assess the likelihood of



Figure 1. ADA Bridge Model [17]

Figure 2. ADA bridge mode shape

certain statements based on other statements.

p(θ|D,M) =
p(D|θ,M).p(θ|M)

p(D|M)
(1)

The model updating process involves updating the uncertain variables represented
by θ and optimizing the parameters represented by D based on the model assumption
represented by M . In this process, the error in the modal parameters of interest, such
as natural frequencies or mode shape, is taken as D. The prior, likelihood, and poste-
rior functions are represented by p(θ|M), p(D|θ,M), and p(θ|D,M), respectively, with



Figure 3. ADA Bridge Model

p(D|M) serving as a normalization factor [18–20].
The likelihood function expresses the degree of agreement between the simulation

and the reference modal data for a given set of uncertain parameters θ. In the presented
formulations, the dependence on the model assumption M is omitted for the sake of
simplicity. Using the axioms of probability the likelihood function yields the following
form:
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Eq. (2) represents the comprehensive form of likelihood function [10, 15, 21, 22]. in
which ψ̂(n)

m and ω̂(n)
m represent the reference mode shape and natural frequency of the

mth mode at nth set of field measurement/experiment, while ϕ(n)
m and ω(n)

m are the mode
shapes and natural frequencies of the numerical model. The level of uncertainty in the
parameters can be determined by the δ(n)ψm

2
and δ(n)ωm

2
terms. Transitional Markov Chain

Monte Carlo (TMCMC) sampling algorithm is adopted for Bayesian model updating
[12, 14, 23].

After conducting a sensitivity analysis, it was found that the elasticity modulus and
cross-sectional area are the most influential parameters on the frequencies and mode
shapes of the structure. To simplify the analysis, the bridge components were catego-
rized into four groups: bottom chord, top chord, vertical, and diagonal members. All
members in each group were assumed to have the same mechanical properties, and their
cross-sections were multiplied by a factor that remained constant within each group. It
is also worth mentioning that the boundary condition significantly affects the dynamic
properties of the system, and the ideal simply supported boundary condition is impos-
sible in practice. To model the system’s friction, a horizontal linear spring with an un-
known stiffness was included, as depicted in Figure 3.

Normal distribution around the original values has been adopted as the prior function
for all parameters to be updated. Error in the prediction of natural frequencies and mode
shapes is minimized subsequently according to Eq.(2). Generally, the first or second
modes are typically investigated in the VBI framework. The 2D model developed for
the ADA bridge is also incapable of capturing torsional modes. As a result, the model



Figure 4. Updated ADA bridge MAC number

updating process has been focused on optimizing the first three bending modes. Tables I
and II present uncertain parameters as well as natural frequencies, before and after model
updating process. MAC numbers of the updated ADA bridge model are also provided in
Figure 4.

The original work by Zhou et al. [15] neglected the uncertainty in cross-section ar-
eas, which is revealed to significantly affect the dynamic properties of the bridge. The
cross-section areas determine the neutral axis and the second moment of inertia of the
entire system, and their axial stiffness contributes to the overall stiffness matrix. Despite
being ignored in the previous study, it is revealed that this uncertainty affects the bridge’s

TABLE I. UPDATED PARAMETERS

Uncertain parameter Member group Before updating Updated

Elasticity Modulus

Bottom chord 2× 1011 Pa 1.92× 1011 Pa
Top chord 2× 1011 Pa 1.56× 1011 Pa

Vertical members 2× 1011 Pa 1.85× 1011 Pa
Diagonal members 2× 1011 Pa 2.11× 1011 Pa

Section area multiplier

Bottom chord 1 1.01
Top chord 1 1.02

Vertical members 1 0.60
Diagonal members 1 0.62

Spring stiffness - 0 N
m

1.77× 108 N
m

TABLE II. UPDATED NATURAL FREQUENCIES

Field Test Before updating After updating
Freq.(Hz) Freq.(Hz) Error(%) Freq.(Hz) Error(%)

Mode 1 2.975 3.220 8.24% 2.975 -0.02%
Mode 2 6.872 8.085 17.65% 6.890 0.27%
Mode 3 9.608 11.206 16.65% 9.620 0.13%



Figure 5. Acceleration spectrum of the vehicle passing over the ADA bridge for different
speed parameters (πv/Lωb)

dynamic properties significantly. Table II and the accompanying figure 4 demonstrate a
strong agreement between the natural frequencies of the updated model and field test
data, indicating the effectiveness of the applied TMCMC algorithm in updating the
model with 9 uncertain parameters. By further tuning these uncertain parameters, the
accuracy of the updated model can potentially be improved even further. Therefore, the
updated model can be used as a digital twin of the structure in structural health monitor-
ing applications.

VEHICLE BRIDGE INTERACTION

Dynamic response of the bridge subjected to a moving vehicle is studied in this sec-
tion. The bottom chord members are subjected to a moving single-degree-of-freedom
system, representing the passing vehicle. It is assumed that the unsprung mass is always
in contact with the beam. The interaction forces existing at the contact point make the
two subsystems coupled. Two sets of second-order equations of motion, for vehicle and
bridge, have to be solved for the purpose of vehicle–bridge systems analysis. Normally,
these two coupled equations are solved simultaneously by the use of the Newmark-β
time-integration technique. VBI problems, however, may encounter some instabilities
in the system which can not be handled by the conventional Newmark method. The
generalized-α method provides an alternative with the ability to handle stiff and highly
nonlinear systems, and it has been widely used in engineering simulations for dynamic
analysis of structures and fluids [24,25]. It also shows superior performance against nu-
merical instabilities associated with complicated VBI cases. Vertical acceleration spec-
trum of the sprung mass is presented in figures 5 and 6. The road surface profile is
randomly generated according to Power Spectral Density (PSD) functions provided by
ISO 8608 (International Organization for Standardization) [26].

The figures 5 and 6 demonstrate the effective extraction of bridge frequencies using
the proposed simplification. The first three vibration frequencies are captured success-



Figure 6. Acceleration spectrum of the vehicle passing over the ADA bridge varying the
extent of road surface roughness - speed parameters πv/Lωb = 0.04

fully. However, in order to ensure accurate ADA bridge frequency extraction, a lower
vehicle speed is required, as higher speeds can reduce accuracy and magnify the vehicle
frequency. It also shows acceptable performance in frequency extraction in the pres-
ence of road surface roughness. However, distinguishing the bridge frequencies from
roughness-induced frequencies is still a challenging issue. This data can be further pro-
cessed to identify any potential structural damage. The developed approach reduces the
computational expenses and provides a promising methodology for indirect data-driven
damage detection techniques which require a large number of simulations.

CONCLUSION

The use of Bayesian finite element model updating has become prevalent in the cal-
ibration of numerical models in civil infrastructures. In this study, the ADA bridge’s
finite element model was successfully updated, resulting in the first three modes being
in excellent agreement with field test data. As a result, the 2D model can effectively
represent the actual structure while minimizing computational effort. The efficiency of
the Transitional Markov Chain Monte Carlo algorithm in dealing with high-dimensional
problems was demonstrated. The vehicle bridge interaction was studied subsequently.
The proposed approach was capable of extracting the bridge’s dynamic properties, even
in the presence of road surface roughness. This methodology provides a promising tech-
nique for indirect data-driven bridge health monitoring projects which rely on a large
number of simulations.
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