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ABSTRACT

Structural health monitoring (SHM) of bridges addresses the need for efficient and
cost-effective monitoring of structures. The purpose of SHM is to detect structural
damage and provide information related to maintenance, inspection, and repair. This
information would then be supplied to asset managers in order to make improved
maintenance decisions. This paper presents an investigation into the connection between
SHM and decision-making via Bayesian decision theory and the value of information
(Vol) obtained from SHM. The results and properties of an SHM damage classifier are
used to update the probabilities of a tree-based decision model. Two analyses are
included. Firstly, a sensitivity analysis of the value of information (Vol) of an SHM
system for varying cost ratios is performed. The SHM system was applied to a
benchmark study in which the dynamic behaviour of a steel bridge was measured for
both undamaged and damaged structural conditions. Secondly, the relationship between
the expected costs of the available actions and the size of the sensor network of the SHM
system is obtained by selecting sub-sets from the complete measurement system utilized
in the benchmark system. The applicability of SHM results for informing and updating
damage probabilities is demonstrated.

INTRODUCTION

Structures close to reaching their design service life, such as a significant proportion
of European bridges [1], require careful and continuous control and supervision to
ensure safe usage. Structural health monitoring (SHM) has, in the last two decades,
emerged as an alternative or complement to traditional control practices. The overall
objective is to provide the authorities with the correct information such that
infrastructure management is optimal.

Decision theory provides infrastructure management the possibility to analyse and
obtain expected utilities of possible actions. Decision theory is based on risk analysis of
a number of outcome costs or utilities where the probability of a state of nature
combined with an action would result in a given outcome. The state of the art of SHM
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systems indicates the feasibility of detecting damage on real structures and supplying
error rates of these SHM damage classifiers [2][3]. This allows the usage of SHM
systems as input for decision-making [4].

It remains important to verify that the costs associated with implementing an SHM
system are compensated by the benefit of supplying additional information for decision-
makers. This analysis is approached using the concept of the value of information (Vol)
of SHM, which is, in simple terms, the difference in expected utilities between
implementing an SHM system or not for a given structure. In other words, the challenge
is to consolidate the relationship between damage detection and utility obtained from
better decisions. The increased interest in SHM in the last couple of decades also implies
heightened research interest in the Vol of SHM [5].

This paper explores the effects that different variables of an SHM system have on
the expected costs of maintaining a bridge. This is achieved by defining a decision
model that considers the actions of doing nothing, repairing, or inspecting the bridge.
The model also evaluates the implementation of the SHM system on the structure by
employing properties and results from the SHM damage classifier to update the
probabilities of failure of the structure. The classifier indicates positive or negative
indications of damage and has false positive and false negative rates of error associated
with these indications. The error rates of the damage classifier are obtained from
implementing it on a benchmark study on the Hell Bridge Test Arena (HBTA), where
the responses of the bridge to dynamic excitation in both undamaged and damaged
structural conditions were captured with a dense sensor network [6].

The results present a sensitivity analysis of the Vol of the SHM system implemented
at HBTA for different repair/SHM and failure/SHM cost ratios. Additionally, the
relationship between the size of the sensor network and the expected utilities of the
available actions is obtained.

EXPERIMENTAL STUDY

The HBTA, shown in Figure 1, is an open-deck steel railway truss bridge. The
bridge consists of two vertical walls, a deck, and lateral bracing located below the deck.
After more than 100 years of operation, the bridge was moved to a test facility located
in Norway. The length and width of the bridge are 35 m and 4.5 m, respectively. The
bridge serves as a full-scale experimental test bridge for damage detection and SHM

[7].

Figure 1. The Hell Bridge Test Arena
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Figure 2. Overview of the experimental conditions. (a) Location and numbering of
accelerometers on the bridge deck. (b) Damage locations on bridge deck. (c) Damage locations on
the lateral bracing

The structural system of the bridge, shown in Figure 2a, is composed of stringers a
- d, with cross beams between them labelled 1’ - 10°. The sleepers are supported by
floor beams, identified with labels 1 - 11. These floor beams are connected to the vertical
walls labelled A and B. The lateral bracing of the structure is connected to the lower
chords of these walls.

An extensive experimental campaign was carried out on the HBTA during autumn
2021. The structure was excited by a modal vibration shaker in both damaged and
undamaged conditions. The modal vibration shaker was configured to provide white
noise as dynamic loading, while the bridge response was captured using 40 single-axis
accelerometers (Dytran 3055D3) located below the bridge deck. The accelerometers
were distributed along and across the bridge deck, as shown in Figure 2a.

Table I describes the different damaged and undamaged conditions in which the
structure was excited while recording its response. Figure 2b and Figure 2c indicate the
location of the eight damage states. These damage states were imposed on different
connections and were introduced by temporarily removing all the bolts of these joints.
Four different damage types were selected: stringer-to-floor beam connections (DS 1
and DS 2), stringer cross beams (DS 3 and DS 4), lateral bracing connections (DS 5 —
DS 7), and connections between floor beams and main load-carrying members (DS 8).
The two undamaged states, considered the baseline, correspond to the undamaged
condition of the structure, i.e., before any damage was imposed and after repairing all
the damages. 80 sets of acceleration time series were obtained for each state condition
adding up to 800 tests. Additional documentation of the data acquisition system, signal
processing, and experimental conditions are available in Svendsen et.al. [7].



TABLE I. OVERVIEW OF THE STATES OF THE STRUCTURE DURING THE

EXPERIMENT
State .
Label condition Type Description
UDS 1 Undamaged Baseline condition Before all damage state conditions
UDS 2 Undamaged Baseline condition After all damage state conditions
DS1  Damaged Stringer-to-floor beam Single connection damaged
connection
DS2  Damaged Stringer-to-floor beam Multiple connections damaged
connection
DS3  Damaged Stringer cross beam Main part of single cross beam
removed
DS4  Damaged Stringer cross beam Main parts of multiple cross
beams removed
DS5 Damaged Lateral bracing connection Single connection damaged
DS6  Damaged Lateral bracing connection Single connection damaged
DS7 Damaged Lateral bracing connection Multiple connections damaged
Connection between floor
DS8  Damaged beam and main load-carrying Single connection damaged
member

DAMAGE-SENSITIVE FEATURES AND CLASSIFIER

AR parameters are selected to characterize the acceleration time series as damage-
sensitive features, as done in previous studies [8][9]. An AR model utilizes past data
points of a time series to obtain the present data point. The quantity of past data points
used by the model is the order of the model. The p-order autoregressive model, AR(p),
for a given time series is defined as [10]:

P
Y, =28, +¢, (1)
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where y: and yt are the data points at indexes t and t - j, @; is the autoregressive parameter
J, and & corresponds to the residual of the model at index t.

An AR(5) model is selected and each accelerometer time series is characterized by
five coefficients. This leads to 200 features per test. The complete set of AR coefficients
become a matrix with 800 rows and 200 columns, where each row corresponds to a
specific structural state and each column to an AR coefficient for a specific sensor. This
matrix is divided for training and testing, and the Mahalanobis square distance (MSD)
algorithm is applied to obtain damage indices (DIs). These DIs are the numerical values
of the MSD, which indicate the distance between point z; and the mean X of a sample
distribution, given by:

DI =(z,-x)C ' (z,-%)" ()
where C is the covariance matrix. C and X are obtained from the training matrix.

The approach to defining the threshold, which separates damaged behaviour from
baseline behaviour for 99 % confidence, is based on Monte Carlo simulations [11].



The false positive rate (FPR) and false negative rate (FNR) of the SHM damage
classifier are obtained based on the fact that the true state of the structure, undamaged
or damaged states, are known. The FPR is obtained by dividing the number of times the
classifier indicates damage from the tests when the real state is undamaged by the total
quantity of undamaged tests. Conversely, the FNR is obtained by dividing the number
of times the classifier indicates no damage from the tests when the real state is damaged
by the total quantity of damaged tests.

DECISION ANALYSIS FOR STRUCTURAL HEALTH MONITORING

Bayesian decision theory involves incorporating Bayesian probability updating into
the decision trees commonly used in decision theory. Decision trees are models where
each combination of a set of available actions a; € A with possible states of nature 6; €
©®, which are associated with probabilities, are assigned a value or cost u; € U. An
experiment increases the amount of available information for the decision model and its
outcomes can provide additional certainty regarding the probabilities of states of nature.
Additional certainty is implemented in a-posteriori and pre-posteriori decision trees by
adding layers of experiments e; € E and associated outcomes z; € Z before the set of
available actions aj € A [12]. The probabilities of the possible states of nature are affected
by the outcomes of the experiments. New probabilities are updated via Bayes Rule (3)
and thus obtaining posterior probabilities:

" _ p[zk |01]pv[91] 3
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Here, p’’[6i|zi] is the posterior probability of state 0; given experiment outcome zi,
plzi6i] is the conditional probability of outcome z; given state of nature 0; and p’[6] is
the prior probability of state of nature ;.

In simple terms, an a-posteriori analysis is limited to the updating of probabilities
from the extra information from the outcomes of an experiment whereas pre-posteriori
analyses include the analysis of which experiment, if any, is better based on the expected
utility of each experiment. For this objective, the value of information (Vol) of a given
experiment e; is computed as:

Volle,] = Ele,]- Ele,] (4)

where E[e;] is the expected utility of experiment e; and E[eo] is the expected value of not
implementing any experiment. In the case of decision analysis for structural health
monitoring, implementing an experiment it means to implement a specific SHM system.
Therefore, as the Value of Information (Vol) increases, there is a corresponding increase
in the benefit derived from installing a Structural Health Monitoring (SHM) system..

Combining the concepts of SHM and Bayesian Decision Theory, a tree with the
architecture shown in Figure 3 is built. The first branching of the decision tree is the
implementation of an SHM damage classifier with positive and negative indications of
damage as outcomes.
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Figure 3. SHM decision tree architecture

The outcomes of the damage classifier have associated probabilities that are
dependent on FPR, FNR, and the prior probability of damage in the structure.

p(h)=(1-FPR)-(1-p'(D))+ FNR- p'(D) (5)
p(d)=FPR-(1-p'(D))+(1-FNR)- p'(D)

p(h) and p(d) are the probabilities of negative and positive indications of damage,
respectively. TNR is the true negative ratio and FPR is the false positive ratio. p'(D) is
the prior probability of damage in the structure, p'(H) = 1-p'(D) is the prior probability
of an undamaged structure.



The set of actions A in the decision model is to do nothing, to repair the structure,
and to make an additional inspection in case the SHM damage classifier shows a
positive indication of damage. Here, it is assumed that inspections and repairs are ideal,
meaning that inspections provide complete certainty about the actual condition of the
structure, and repairs restore the structure to its original, undamaged state.

A simplified cost model (6) is adopted for the analysis presented in this paper in
which the influence of the discount rate is disregarded due to uncertainties regarding the
time frame to consider. Additionally, the cost associated to no failure Co, which would
be added to all the possible branches of the tree, is assigned a null value. The states of
the structure, undamaged or damaged, and their combinations with the actions yield the
costs shown in the tree in Figure 3.

C(a;,0)=C,+C +C

failure repair

+ Cshm + Cinspection (6)

Finally, the posterior probabilities of the structure states are calculated and depend
on the outcomes and the properties of the SHM system [4]. The posterior probabilities
are calculated as follows:

[(1- FNR)" - FNR"]- p'(D)
[(1— FNR)! -FNR"]- p'(D)+[FPR* -(1-FPR)"]-p'(H)  (7)
p'"lH |(h,d)]=1-p"[D[(h,d)]

p"[D|(h,d)]=

p”’[D|(h,d)] is the posterior probability of a damaged structure given observations
(h,d), p’[H|(h,d)] is the posterior probability of an undamaged structure given
indications (h,d), h is the number of times the damage classifier yields a negative
indication of damage, i.e., undamaged, and d is the number of times the damage
classifier yields a positive indication of damage, i.e., damaged.

Sensitivity Analysis

The Vol of the SHM system for different repair/SHM and failure/SHM cost ratios
is calculated. The ratios range from 1 to 40 for the repair/SHM cost ratio and from 1 to
200 for the failure/SHM cost ratio. Two different cases, with different prior probabilities
of damage p’(D), and positive and negative indications of damage, d and h, are analysed.
The numerical values used as input for the decision model are presented in table II.

Case 1, where the prior probability of damage is close to zero, corresponds to a
typical case of a newly built or retrofitted structure. In this case, additionally, the damage
classifier yields positive indications of damage implying damage in the structure.

Case 2, where the prior probability of damage is high, corresponds to a structure
which is thought to be damaged as in the case of accidental loading. In this case, the
damage classifier yields negative indications of damage implying an undamaged
structure.



TABLE IL FIXED VALUES AND CASES FOR SENSITIVITY ANALYSIS.
FPR FNR
%) (%) p' (D) h d
Casel 63 41 100E-06 1 7
Case2 63 4.1 020 7 1

Number of sensors and expected utilities

Subsets from the complete sensor network shown in Figure 2a are selected to
observe the relationship between the expected costs associated with the SHM system
and the number of sensors in the system. The subset selection is based on its proximity
to the damage locations shown in Figure 2b and c. The error rates for these smaller SHM
systems, which are calculated following the same procedure as for the complete SHM
system [13], are shown in table III.

The main interest of this analysis is to visualize the influence of the number of
sensors on the expected costs associated with the SHM system Thus, the repair/SHM
and failure/SHM cost ratios are set to 10 and 100, respectively. The prior probability of
damage p’(D) is fixed to 10°. Furthermore, the negative and positive indications of
damage, h and d, are 1 and 10, respectively.

RESULTS
Sensitivity Analysis

Figure 4 shows the results from the sensitivity analysis. The contour plots present
the Vol for different repair/SHM and failure/SHM cost ratios for the FPR, FNR, prior
probability of damage, and negative and positive indication of damage values indicated
in table II.

The results of Case 1, shown in Figure 4a, indicate that the Vol is not positive for
the considered range of cost ratios. The highest possible Vol for Case 1 is zero for
structures with low repair/SHM and low failure/SHM cost ratios

TABLE III. FIXED VALUES AND INDICATIONS FOR THE SENSITIVITY ANALYSIS.

Number of FPR FNR
Sensors (%) (%)
1 0 734

5 0 40.5

10 1.3 322
15 1.3 20.9
20 1.3 15.8
25 1.3 13.4
30 2.5 11.1
35 3.8 5.6
40 6.3 4.1




Furthermore, the results for Case 1 show that the Vol is more sensitive to the
failure/SHM ratio. For any repair/SHM cost ratio over 5, the Vol diminishes rapidly as
the failure/SHM cost ratio reaches a critical value after which the Vol does not change.
For example, if the repair/SHM cost ratio is 20 the Vol would start at 0 and reach -20
for a failure/SHM cost ratio of 25, then the Vol keeps this same value of -20 for the rest
of the failure/SHM cost ratio range. For any failure/SHM cost ratio over 50, the Vol is
inversely proportional to the repair/SHM cost ratio.

The results of Case 2, shown in Figure 4b, indicate that the Vol is positive for almost
the complete considered range of cost ratios. The lowest possible Vol for Case 1 occurs
for structures with very low failure/SHM cost ratios. The Vol seems equally sensitive
to both cost ratios.
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Figure 4. Sensitivity analysis results (a) Case 1 (b) Case 2



Number of sensors and expected utilities

The influence of the number of sensors of the SHM system on the decision model
properties is presented in Figure 5. The FPR and FNR corresponding to the number of
sensors for these calculations are presented in in table II1.

Figure 5a shows the expected costs of each action from the decision model in the
case of installing an SHM system for different number of sensors of the SHM system.
The expected cost of doing nothing has an S-shape curve and it increases rapidly when
the number of sensors is larger than 15. The expected cost of inspecting rises slightly as
the number of sensors increases whereas the expected cost of repairing is invariant.
Figure 5a indicates that the least expensive action is to do nothing up to 15 sensors. To
inspect the structure is the least expensive action between 15 and 25 sensors. Then, for
numbers of sensors larger than 25, to repair the bridge is the least expensive action.
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Figure 5. Influence of the number of sensors on decision model properties (a) Number of sensors vs.
Expected costs (b) Number of sensors vs. posterior probability of damage.



Figure 5b presents the posterior probability of damage for different number of
sensors, and it also is an S-shapes curve. Even though the SHM system yields 10
indications of damage the posterior probability of damage is close to 10, the prior
probability of damage, for fewer than 15 sensors. As more sensors than 15 are used, the
posterior probability of damage rapidly reaches the maximum value.

DISCUSSION
Sensitivity Analysis

Case 1 represents newly built or retrofitted structure. The prior probability of
damage is close to zero and the damage classifier yields positive indications of damage.
In this case the Vol is always non positive, and it reduces as the costs of failure and
repair increase. This means that implementing an SHM system would not be convenient
for the decision model. The expected utilities of implementing an SHM system
compared to not implementing it are equal even for low failure/SHM and repair/SHM
cost ratios, where the Vol is zero.

The results for Case 1 indicate that the expected utilities decrease when more
information is supplied regarding a structure that is thought to be undamaged but
evidence suggests otherwise. The prior-undamaged structure is monitored and the
structure appears to be damaged since the damage classifier yields positive indications
of damage but the expected utilities associated to this new knowledge are
counterintuitively negative. These results, shown in Figure 4a, reflect a limitation of the
decision model related to the probability of damage when no SHM system is applied.
The expected costs of SHM grow because the posterior probability of damage increases
and multiplies the cost of failure. The Vol reduces linearly as the SHM expected costs
increase because the expected cost of not implementing the SHM system is constant
since the prior probability of damage is not changed. This limitation could be addressed
by selecting a decision model that considers the prior probability of damage of the
structure without an SHM system as a function of time.

Case 2 represents a structure believed to be damaged. The prior probability of
damage is high and the damage classifier yields negative indications of damage. In this
case the Vol is positive in most of the cost ratio combinations, and it increases as the
costs of failure and repair increase. This means that implementing an SHM system
would be convenient for the decision for structures with failure/SHM and repair/SHM
cost ratios higher than 25 and 5, respectively.

The results for Case 2 indicate that the expected utilities increase when more
information is supplied regarding a structure that is thought to be damaged but evidence
suggests otherwise. The increasing Vol of the SHM, shown in Figure 4b, reflects the
increase in expected utility when SHM backs up the certainty regarding an undamaged
state of the structure. The Vol, in this case, is proportional to the importance of the
structure since it increases as the failure/SHM and repair/SHM cost ratios increase, and
high ratios are indications of a large and important structure.



Number of sensors and expected utilities

The results from this analysis show the influence the increase in the posterior
probability of damage has on the Vol of SHM in more detail. In these calculations the
prior probability of damage is close to zero and the damage classifier yields positive
indications of damage, such as in Case 1 of the sensitivity analysis. Figure 5a provides
the expected utilities of each action from the model in the case of installing an SHM
system and indicates the least expensive action. It can be observed from Figure 5a that
the expected cost of doing nothing is an s-shaped curve and increases rapidly once a
critical number of sensors is passed. This is because the expected cost of doing nothing
is the product of the posterior probability of damage times the cost of failure. The
posterior probability of damage, shown in Figure 5b, also increases rapidly as the
number of sensors reaches the same critical value.

The rapid increase in the posterior probability of damage can be explained by the
fact that the system is more sensitive as more sensors are used. In other words, the
probability of damage is higher for a sensor network of 30 sensors than for a sensor
network of 10 sensors when considering 10 indications of damage as shown in Figure
5b. This means that the posterior probability of damage of the decision model depends
on the sensitivity of the implemented SHM system.

Conclusion

This paper explores the effects that different properties of an SHM system have on
the decision-making processes using Bayesian decision analysis. Several
simplifications are considered to observe simple but insightful relations. SHM
properties are kept constant to obtain a basic comprehension of the relationship between
Vol and cost ratios. Additionally, costs are kept constant and the effect of SHM
variables on the expected costs of actions is computed.

The results show that the implementation of an SHM system has the effect of
reducing the uncertainty associated with the true state of the structure. In the common
case where the prior probability of damage is small and the SHM damage classifier
yields several positive indications of damage, hinting towards a damaged structure, the
expected cost associated with implementing the SHM system increase, and its
corresponding Vol decreases. This limitation could be overcome by including time
dependencies in the prior probability of damage. In the case where the prior probability
of damage is large and the SHM damage classifier yields several negative indications
of damage, hinting towards an undamaged structure, the expected cost associated with
implementing the SHM system decrease, and its corresponding Vol increases. In
conclusion, the applicability of utilizing SHM results for informing and updating
damage probabilities in decision models is demonstrated.

REFERENCES

[1] K. Gkoumas ef al., Research and innovation in bridge maintenance, inspection and monitoring
- A European perspective based on the Transport Research and Innovation Monitoring and
Information System (TRIMIS). 2019.

[2] B. T. Svendsen, G. T. Freseth, O. Qiscth, and A. Rennquist, “A data-based structural health
monitoring approach for damage detection in steel bridges using experimental data,” J. Civ.



(3]

[4]

Struct. Heal. Monit., vol. 12, no. 1, pp. 101-115, 2022, doi: 10.1007/s13349-021-00530-8.

K. Maes, L. Van Meerbeeck, E. Reynders, and G. Lombaert, “Validation of vibration-based
structural health monitoring on retrofitted railway bridge KW51,” Mech. Syst. Signal Process.,
vol. 165, no. September 2021, p. 108380, 2022, doi: 10.1016/j.ymssp.2021.108380.

C. Neves, J. Leander, I. Gonzalez, and R. Karoumi, “An approach to decision-making analysis
for implementation of structural health monitoring in bridges,” Struct. Control Heal. Monit., vol.
26, no. 6, pp. 1-21, 2019, doi: 10.1002/stc.2352.

S. Thons, “Quantifying the Value of Structural Health Information for Decision Support : Guide
for Scientists,” 2019.

B. T. Svendsen, O. Qiseth, G. T. Freseth, and A. Rennquist, “A hybrid structural health
monitoring approach for damage detection in steel bridges under simulated environmental
conditions using numerical and experimental data,” Struct. Heal. Monit., vol. 0, no. 0, pp. 1-22,
2022, doi: 10.1177/14759217221098998.

B. T. Svendsen, @. W. Petersen, G. T. Fraseth, and A. Rennquist, “Improved finite element
model updating of a full-scale steel bridge using sensitivity analysis,” Struct. Infrastruct. Eng.,
vol. 0, no. 0, pp. 1-17, 2021, doi: 10.1080/15732479.2021.1944227.

M. R. Azim and M. Giil, “Damage detection of steel girder railway bridges utilizing operational
vibration response,” Struct. Control Heal. Monit., vol. 26, no. 11, pp. 1-15, 2019, doi:
10.1002/stc.2447.

E. Figueiredo, J. Figueiras, G. Park, C. R. Farrar, and K. Worden, “Influence of the
autoregressive model order on damage detection,” Comput. Civ. Infrastruct. Eng., vol. 26, no. 3,
pp- 225-238, 2011, doi: 10.1111/j.1467-8667.2010.00685.x.

G. Box, G. Jenkins, and G. Reinsel, Time series analysis, Forecasting and Control. 2008.

K. Worden, G. Manson, and N. R. J. Fieller, “Damage detection using outlier analysis,” J.
Sound Vib., vol. 229, no. 3, pp. 647-667, 2000, doi: 10.1006/jsvi.1999.2514.

J. R. Benjamin and C. A. Cornell, Probability, statistics, and decision for civil engineers.
McGraw-Hill, 1970.

G. A. del Pozo, B. T. Svendsen, and O. Qiseth, “The effects of an extended sensitivity analysis
of sensor configurations for bridge damage detection using experimental data,” Proc. 41st
IMAC, A Conf. Expo. Struct. Dyn. 2023, 2023.





