
Implementation of Decision Analysis on a 
Structural Health Monitoring System 
Applied to a Bridge Benchmark Study 
 

GABRIEL A. DEL POZO, BJØRN T. SVENDSEN 
and OLE ØISETH 

 
ABSTRACT 

 
Structural health monitoring (SHM) of bridges addresses the need for efficient and 

cost-effective monitoring of structures. The purpose of SHM is to detect structural 
damage and provide information related to maintenance, inspection, and repair. This 
information would then be supplied to asset managers in order to make improved 
maintenance decisions. This paper presents an investigation into the connection between 
SHM and decision-making via Bayesian decision theory and the value of information 
(VoI) obtained from SHM. The results and properties of an SHM damage classifier are 
used to update the probabilities of a tree-based decision model. Two analyses are 
included. Firstly, a sensitivity analysis of the value of information (VoI) of an SHM 
system for varying cost ratios is performed. The SHM system was applied to a 
benchmark study in which the dynamic behaviour of a steel bridge was measured for 
both undamaged and damaged structural conditions. Secondly, the relationship between 
the expected costs of the available actions and the size of the sensor network of the SHM 
system is obtained by selecting sub-sets from the complete measurement system utilized 
in the benchmark system. The applicability of SHM results for informing and updating 
damage probabilities is demonstrated. 

 
 

INTRODUCTION 
 

Structures close to reaching their design service life, such as a significant proportion 
of European bridges [1], require careful and continuous control and supervision to 
ensure safe usage. Structural health monitoring (SHM) has, in the last two decades, 
emerged as an alternative or complement to traditional control practices. The overall 
objective is to provide the authorities with the correct information such that 
infrastructure management is optimal. 

Decision theory provides infrastructure management the possibility to analyse and 
obtain expected utilities of possible actions. Decision theory is based on risk analysis of 
a number of outcome costs or utilities where the probability of a state of nature 
combined with an action would result in a given outcome. The state of the art of SHM 
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systems indicates the feasibility of detecting damage on real structures and supplying 
error rates of these SHM damage classifiers [2][3]. This allows the usage of SHM 
systems as input for decision-making [4].  

It remains important to verify that the costs associated with implementing an SHM 
system are compensated by the benefit of supplying additional information for decision-
makers. This analysis is approached using the concept of the value of information (VoI) 
of SHM, which is, in simple terms, the difference in expected utilities between 
implementing an SHM system or not for a given structure. In other words, the challenge 
is to consolidate the relationship between damage detection and utility obtained from 
better decisions. The increased interest in SHM in the last couple of decades also implies 
heightened research interest in the VoI of SHM [5].  

This paper explores the effects that different variables of an SHM system have on 
the expected costs of maintaining a bridge. This is achieved by defining a decision 
model that considers the actions of doing nothing, repairing, or inspecting the bridge. 
The model also evaluates the implementation of the SHM system on the structure by 
employing properties and results from the SHM damage classifier to update the 
probabilities of failure of the structure. The classifier indicates positive or negative 
indications of damage and has false positive and false negative rates of error associated 
with these indications. The error rates of the damage classifier are obtained from 
implementing it on a benchmark study on the Hell Bridge Test Arena (HBTA), where 
the responses of the bridge to dynamic excitation in both undamaged and damaged 
structural conditions were captured with a dense sensor network [6].  

The results present a sensitivity analysis of the VoI of the SHM system implemented 
at HBTA for different repair/SHM and failure/SHM cost ratios. Additionally, the 
relationship between the size of the sensor network and the expected utilities of the 
available actions is obtained. 

 
 

EXPERIMENTAL STUDY 
 
The HBTA, shown in Figure 1, is an open-deck steel railway truss bridge. The 

bridge consists of two vertical walls, a deck, and lateral bracing located below the deck. 
After more than 100 years of operation, the bridge was moved to a test facility located 
in Norway. The length and width of the bridge are 35 m and 4.5 m, respectively. The 
bridge serves as a full-scale experimental test bridge for damage detection and SHM 
[7]. 

 
 

 
 

Figure 1. The Hell Bridge Test Arena 
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Figure 2. Overview of the experimental conditions. (a) Location and numbering of 

accelerometers on the bridge deck. (b) Damage locations on bridge deck. (c) Damage locations on 
the lateral bracing 

 
 
 
The structural system of the bridge, shown in Figure 2a, is composed of stringers a 

- d, with cross beams between them labelled 1’ - 10’. The sleepers are supported by 
floor beams, identified with labels 1 - 11. These floor beams are connected to the vertical 
walls labelled A and B. The lateral bracing of the structure is connected to the lower 
chords of these walls. 

An extensive experimental campaign was carried out on the HBTA during autumn 
2021. The structure was excited by a modal vibration shaker in both damaged and 
undamaged conditions. The modal vibration shaker was configured to provide white 
noise as dynamic loading, while the bridge response was captured using 40 single-axis 
accelerometers (Dytran 3055D3) located below the bridge deck. The accelerometers 
were distributed along and across the bridge deck, as shown in Figure 2a.  

Table I describes the different damaged and undamaged conditions in which the 
structure was excited while recording its response. Figure 2b and Figure 2c indicate the 
location of the eight damage states. These damage states were imposed on different 
connections and were introduced by temporarily removing all the bolts of these joints. 
Four different damage types were selected: stringer-to-floor beam connections (DS 1 
and DS 2), stringer cross beams (DS 3 and DS 4), lateral bracing connections (DS 5 – 
DS 7), and connections between floor beams and main load-carrying members (DS 8). 
The two undamaged states, considered the baseline, correspond to the undamaged 
condition of the structure, i.e., before any damage was imposed and after repairing all 
the damages. 80 sets of acceleration time series were obtained for each state condition 
adding up to 800 tests.  Additional documentation of the data acquisition system, signal 
processing, and experimental conditions are available in Svendsen et.al. [7]. 

 
 
 



TABLE I. OVERVIEW OF THE STATES OF THE STRUCTURE DURING THE 
EXPERIMENT 

Label State 
condition Type Description 

UDS 1 Undamaged Baseline condition Before all damage state conditions 
UDS 2 Undamaged Baseline condition After all damage state conditions 

DS 1 Damaged Stringer-to-floor beam 
connection Single connection damaged 

DS 2 Damaged Stringer-to-floor beam 
connection Multiple connections damaged 

DS 3 Damaged Stringer cross beam Main part of single cross beam 
removed 

DS 4 Damaged Stringer cross beam Main parts of multiple cross 
beams removed 

DS 5 Damaged Lateral bracing connection Single connection damaged 
DS 6 Damaged Lateral bracing connection Single connection damaged 
DS 7 Damaged Lateral bracing connection Multiple connections damaged 

DS 8 Damaged 
Connection between floor 

beam and main load-carrying 
member 

Single connection damaged 

 
 

DAMAGE-SENSITIVE FEATURES AND CLASSIFIER 
 
AR parameters are selected to characterize the acceleration time series as damage-

sensitive features, as done in previous studies [8][9]. An AR model utilizes past data 
points of a time series to obtain the present data point. The quantity of past data points 
used by the model is the order of the model. The p-order autoregressive model, AR(p), 
for a given time series is defined as [10]: 
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where yt and yt-j are the data points at indexes t and t - j, φj is the autoregressive parameter 
j, and εt corresponds to the residual of the model at index t.  

An AR(5) model is selected and each accelerometer time series is characterized by 
five coefficients. This leads to 200 features per test. The complete set of AR coefficients 
become a matrix with 800 rows and 200 columns, where each row corresponds to a 
specific structural state and each column to an AR coefficient for a specific sensor. This 
matrix is divided for training and testing, and the Mahalanobis square distance (MSD) 
algorithm is applied to obtain damage indices (DIs). These DIs are the numerical values 
of the MSD, which indicate the distance between point zi and the mean x̄ of a sample 
distribution, given by: 
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where C is the covariance matrix. C and x̄ are obtained from the training matrix. 
The approach to defining the threshold, which separates damaged behaviour from 

baseline behaviour for 99 % confidence, is based on Monte Carlo simulations [11]. 



The false positive rate (FPR) and false negative rate (FNR) of the SHM damage 
classifier are obtained based on the fact that the true state of the structure, undamaged 
or damaged states, are known. The FPR is obtained by dividing the number of times the 
classifier indicates damage from the tests when the real state is undamaged by the total 
quantity of undamaged tests. Conversely, the FNR is obtained by dividing the number 
of times the classifier indicates no damage from the tests when the real state is damaged 
by the total quantity of damaged tests.   

 
 

DECISION ANALYSIS FOR STRUCTURAL HEALTH MONITORING 
 
Bayesian decision theory involves incorporating Bayesian probability updating into 

the decision trees commonly used in decision theory. Decision trees are models where 
each combination of a set of available actions ai ϵ A with possible states of nature θi ϵ 
Θ, which are associated with probabilities, are assigned a value or cost ui ϵ U. An 
experiment increases the amount of available information for the decision model and its 
outcomes can provide additional certainty regarding the probabilities of states of nature. 
Additional certainty is implemented in a-posteriori and pre-posteriori decision trees by 
adding layers of experiments ei ϵ E and associated outcomes zi ϵ Z before the set of 
available actions ai ϵ A [12]. The probabilities of the possible states of nature are affected 
by the outcomes of the experiments. New probabilities are updated via Bayes Rule (3) 
and thus obtaining posterior probabilities: 
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Here, p’’[θi|zi] is the posterior probability of state θi given experiment outcome zi, 

p[zi|θi] is the conditional probability of outcome zi given state of nature θi and p’[θi] is 
the prior probability of state of nature θi. 

In simple terms, an a-posteriori analysis is limited to the updating of probabilities 
from the extra information from the outcomes of an experiment whereas pre-posteriori 
analyses include the analysis of which experiment, if any, is better based on the expected 
utility of each experiment. For this objective, the value of information (VoI) of a given 
experiment ei is computed as: 

 
 0[ ] [ ] [ ]i iVoI e E e E e= −  (4) 
 

where E[ei] is the expected utility of experiment ei and E[e0] is the expected value of not 
implementing any experiment. In the case of decision analysis for structural health 
monitoring, implementing an experiment it means to implement a specific SHM system. 
Therefore, as the Value of Information (VoI) increases, there is a corresponding increase 
in the benefit derived from installing a Structural Health Monitoring (SHM) system.. 

 Combining the concepts of SHM and Bayesian Decision Theory, a tree with the 
architecture shown in Figure 3 is built. The first branching of the decision tree is the 
implementation of an SHM damage classifier with positive and negative indications of 
damage as outcomes. 



 

 
 

Figure 3. SHM decision tree architecture 

 
 
The outcomes of the damage classifier have associated probabilities that are 

dependent on FPR, FNR, and the prior probability of damage in the structure. 
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p(h) and p(d) are the probabilities of negative and positive indications of damage, 

respectively. TNR is the true negative ratio and FPR is the false positive ratio. p'(D) is 
the prior probability of damage in the structure, p'(H) = 1-p'(D) is the prior probability 
of an undamaged structure. 
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The set of actions A in the decision model is to do nothing, to repair the structure, 

and to make an additional inspection in case the SHM damage classifier shows a 
positive indication of damage. Here, it is assumed that inspections and repairs are ideal, 
meaning that inspections provide complete certainty about the actual condition of the 
structure, and repairs restore the structure to its original, undamaged state.  

A simplified cost model (6) is adopted for the analysis presented in this paper in 
which the influence of the discount rate is disregarded due to uncertainties regarding the 
time frame to consider. Additionally, the cost associated to no failure C0, which would 
be added to all the possible branches of the tree, is assigned a null value. The states of 
the structure, undamaged or damaged, and their combinations with the actions yield the 
costs shown in the tree in Figure 3. 

 
 0( , )i i i failure repair shm inspectionC a C C C C Cθ = + + + +  (6) 

 
Finally, the posterior probabilities of the structure states are calculated and depend 

on the outcomes and the properties of the SHM system [4]. The posterior probabilities 
are calculated as follows: 
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p’’[D|(h,d)] is the posterior probability of a damaged structure given observations 

(h,d), p’’[H|(h,d)] is the posterior probability of an undamaged structure given 
indications (h,d), h is the number of times the damage classifier yields a negative 
indication of damage, i.e., undamaged, and d is the number of times the damage 
classifier yields a positive indication of damage, i.e., damaged. 

 
 

Sensitivity Analysis 
 

The VoI of the SHM system for different repair/SHM and failure/SHM cost ratios 
is calculated. The ratios range from 1 to 40 for the repair/SHM cost ratio and from 1 to 
200 for the failure/SHM cost ratio. Two different cases, with different prior probabilities 
of damage p’(D), and positive and negative indications of damage, d and h, are analysed. 
The numerical values used as input for the decision model are presented in table II.  

Case 1, where the prior probability of damage is close to zero, corresponds to a 
typical case of a newly built or retrofitted structure. In this case, additionally, the damage 
classifier yields positive indications of damage implying damage in the structure.  

Case 2, where the prior probability of damage is high, corresponds to a structure 
which is thought to be damaged as in the case of accidental loading. In this case, the 
damage classifier yields negative indications of damage implying an undamaged 
structure. 

 
 
 



TABLE II. FIXED VALUES AND CASES FOR SENSITIVITY ANALYSIS. 

 
FPR 
(%) 

FNR 
(%) p' (D)  h  d  

Case 1 6.3 4.1 1.00E-06 1 7 
Case 2 6.3 4.1 0.20 7 1 

 
 

Number of sensors and expected utilities 
 
Subsets from the complete sensor network shown in Figure 2a are selected to 

observe the relationship between the expected costs associated with the SHM system 
and the number of sensors in the system. The subset selection is based on its proximity 
to the damage locations shown in Figure 2b and c. The error rates for these smaller SHM 
systems, which are calculated following the same procedure as for the complete SHM 
system [13], are shown in table III.  

The main interest of this analysis is to visualize the influence of the number of 
sensors on the expected costs associated with the SHM system Thus, the repair/SHM 
and failure/SHM cost ratios are set to 10 and 100, respectively. The prior probability of 
damage p’(D) is fixed to 10-6. Furthermore, the negative and positive indications of 
damage, h and d, are 1 and 10, respectively. 

 
 

RESULTS 
 

Sensitivity Analysis 
 
Figure 4 shows the results from the sensitivity analysis. The contour plots present 

the VoI for different repair/SHM and failure/SHM cost ratios for the FPR, FNR, prior 
probability of damage, and negative and positive indication of damage values indicated 
in table II.  

The results of Case 1, shown in Figure 4a, indicate that the VoI is not positive for 
the considered range of cost ratios. The highest possible VoI for Case 1 is zero for 
structures with low repair/SHM and low failure/SHM cost ratios 

 
 

TABLE III. FIXED VALUES AND INDICATIONS FOR THE SENSITIVITY ANALYSIS. 
Number of 

 Sensors 
FPR 
(%) 

FNR 
(%) 

1 0 73.4 
5 0 40.5 

10 1.3 32.2 
15 1.3 20.9 
20 1.3 15.8 
25 1.3 13.4 
30 2.5 11.1 
35 3.8 5.6 
40 6.3 4.1 

 



Furthermore, the results for Case 1 show that the VoI is more sensitive to the 
failure/SHM ratio. For any repair/SHM cost ratio over 5, the VoI diminishes rapidly as 
the failure/SHM cost ratio reaches a critical value after which the VoI does not change. 
For example, if the repair/SHM cost ratio is 20 the VoI would start at 0 and reach -20 
for a failure/SHM cost ratio of 25, then the VoI keeps this same value of -20 for the rest 
of the failure/SHM cost ratio range. For any failure/SHM cost ratio over 50, the VoI is 
inversely proportional to the repair/SHM cost ratio.  

The results of Case 2, shown in Figure 4b, indicate that the VoI is positive for almost 
the complete considered range of cost ratios. The lowest possible VoI for Case 1 occurs 
for structures with very low failure/SHM cost ratios. The VoI seems equally sensitive 
to both cost ratios. 

 
 

 
(a) 

 
(b) 

 
Figure 4. Sensitivity analysis results (a) Case 1 (b) Case 2 



Number of sensors and expected utilities 
 
The influence of the number of sensors of the SHM system on the decision model 

properties is presented in Figure 5. The FPR and FNR corresponding to the number of 
sensors for these calculations are presented in in table III.  

Figure 5a shows the expected costs of each action from the decision model in the 
case of installing an SHM system for different number of sensors of the SHM system. 
The expected cost of doing nothing has an S-shape curve and it increases rapidly when 
the number of sensors is larger than 15. The expected cost of inspecting rises slightly as 
the number of sensors increases whereas the expected cost of repairing is invariant. 
Figure 5a indicates that the least expensive action is to do nothing up to 15 sensors. To 
inspect the structure is the least expensive action between 15 and 25 sensors. Then, for 
numbers of sensors larger than 25, to repair the bridge is the least expensive action.  

 
 

 
(a) 

 
(b) 

 
Figure 5. Influence of the number of sensors on decision model properties (a) Number of sensors vs. 

Expected costs (b) Number of sensors vs. posterior probability of damage. 



Figure 5b presents the posterior probability of damage for different number of 
sensors, and it also is an S-shapes curve. Even though the SHM system yields 10 
indications of damage the posterior probability of damage is close to 10-6, the prior 
probability of damage, for fewer than 15 sensors. As more sensors than 15 are used, the 
posterior probability of damage rapidly reaches the maximum value. 
 
 
DISCUSSION 

 
Sensitivity Analysis 
 

Case 1 represents newly built or retrofitted structure. The prior probability of 
damage is close to zero and the damage classifier yields positive indications of damage. 
In this case the VoI is always non positive, and it reduces as the costs of failure and 
repair increase. This means that implementing an SHM system would not be convenient 
for the decision model. The expected utilities of implementing an SHM system 
compared to not implementing it are equal even for low failure/SHM and repair/SHM 
cost ratios, where the VoI is zero.  

The results for Case 1 indicate that the expected utilities decrease when more 
information is supplied regarding a structure that is thought to be undamaged but 
evidence suggests otherwise. The prior-undamaged structure is monitored and the 
structure appears to be damaged since the damage classifier yields positive indications 
of damage but the expected utilities associated to this new knowledge are 
counterintuitively negative. These results, shown in Figure 4a, reflect a limitation of the 
decision model related to the probability of damage when no SHM system is applied. 
The expected costs of SHM grow because the posterior probability of damage increases 
and multiplies the cost of failure. The VoI reduces linearly as the SHM expected costs 
increase because the expected cost of not implementing the SHM system is constant 
since the prior probability of damage is not changed. This limitation could be addressed 
by selecting a decision model that considers the prior probability of damage of the 
structure without an SHM system as a function of time. 

Case 2 represents a structure believed to be damaged. The prior probability of 
damage is high and the damage classifier yields negative indications of damage. In this 
case the VoI is positive in most of the cost ratio combinations, and it increases as the 
costs of failure and repair increase. This means that implementing an SHM system 
would be convenient for the decision for structures with failure/SHM and repair/SHM 
cost ratios higher than 25 and 5, respectively. 

The results for Case 2 indicate that the expected utilities increase when more 
information is supplied regarding a structure that is thought to be damaged but evidence 
suggests otherwise. The increasing VoI of the SHM, shown in Figure 4b, reflects the 
increase in expected utility when SHM backs up the certainty regarding an undamaged 
state of the structure. The VoI, in this case, is proportional to the importance of the 
structure since it increases as the failure/SHM and repair/SHM cost ratios increase, and 
high ratios are indications of a large and important structure. 
 
 
 
 



Number of sensors and expected utilities 
 

The results from this analysis show the influence the increase in the posterior 
probability of damage has on the VoI of SHM in more detail. In these calculations the 
prior probability of damage is close to zero and the damage classifier yields positive 
indications of damage, such as in Case 1 of the sensitivity analysis. Figure 5a provides 
the expected utilities of each action from the model in the case of installing an SHM 
system and indicates the least expensive action. It can be observed from Figure 5a that 
the expected cost of doing nothing is an s-shaped curve and increases rapidly once a 
critical number of sensors is passed. This is because the expected cost of doing nothing 
is the product of the posterior probability of damage times the cost of failure. The 
posterior probability of damage, shown in Figure 5b, also increases rapidly as the 
number of sensors reaches the same critical value. 

The rapid increase in the posterior probability of damage can be explained by the 
fact that the system is more sensitive as more sensors are used. In other words, the 
probability of damage is higher for a sensor network of 30 sensors than for a sensor 
network of 10 sensors when considering 10 indications of damage as shown in Figure 
5b. This means that the posterior probability of damage of the decision model depends 
on the sensitivity of the implemented SHM system. 

 
Conclusion 

 
This paper explores the effects that different properties of an SHM system have on 

the decision-making processes using Bayesian decision analysis. Several 
simplifications are considered to observe simple but insightful relations. SHM 
properties are kept constant to obtain a basic comprehension of the relationship between 
VoI and cost ratios. Additionally, costs are kept constant and the effect of SHM 
variables on the expected costs of actions is computed.  

The results show that the implementation of an SHM system has the effect of 
reducing the uncertainty associated with the true state of the structure. In the common 
case where the prior probability of damage is small and the SHM damage classifier 
yields several positive indications of damage, hinting towards a damaged structure, the 
expected cost associated with implementing the SHM system increase, and its 
corresponding VoI decreases. This limitation could be overcome by including time 
dependencies in the prior probability of damage. In the case where the prior probability 
of damage is large and the SHM damage classifier yields several negative indications 
of damage, hinting towards an undamaged structure, the expected cost associated with 
implementing the SHM system decrease, and its corresponding VoI increases. In 
conclusion, the applicability of utilizing SHM results for informing and updating 
damage probabilities in decision models is demonstrated. 
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