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ABSTRACT

Big data applications are becoming more popular across many different fields
and civil engineering is no different. The benefits of big data lie in its potential to
provide valuable insights into various large datasets. Big data applications can
identify patterns and trends that were previously unknown, which can help them
make informed decisions and develop effective strategies. In the case of civil
engineering, this could be taking large datasets that have been produced in relation
to pieces of infrastructure and using them to create more efficient management
strategies. One of the issues with using big data is that if the input dataset is flawed
then the output resulting from any big data analysis will be compromised.
Therefore, data validation is used, which is the process of ensuring that data is
accurate, complete, and consistent. The consequence of not undertaking data
validation may be Inaccurate or inconsistent data which can lead to incorrect
insights and decisions in big data applications. This paper explores the necessity
of validating data before it is used in a big data application. It outlines some of
the different methods used for validating data and provides an overview of the
potential issues that may arise from data validation errors. A case study is then
presented showing the process of validation on data collected from four bridges
and provides recommendations for implementing data validation as part of a
larger big data workflow. The results of the case study show that validation of
data is an important step in the big data process both for confidence in the outputs
and to make big data applications more useful and more common in the civil
engineering field. The discussion and presented case study in this paper highlight
the necessity of validating data. It has shown some of the potential issues that may
arise from not undertaking data validation.

INTRODUCTION

Big data applications have become increasingly popular in various fields,
including civil engineering. [1] shows the increased popularity in big data
applications in 2016 and this trend does not seem to have decreased in the recent
years. There are a range of potential benefits of big data, providing valuable
insights into large datasets that were previously unknown and predicting future
observations. By identifying patterns and trends, big data applications can inform
decision-making processes and develop effective and efficient strategies.
However, the accuracy of the input data is crucial, in [2] it is stated that inaccurate
or non-valid data cannot serve as a basis for extracting insight. Data validation is
a process used to ensure that data is accurate, complete, and consistent. This paper
explores the necessity of validating data before it is used in a big data application.
Various methods for validating data are presented as well as an overview of the
potential issues that may arise from data validation errors. The paper also presents
a case study of data validation on data collected from four bridges and provides
recommendations for implementing data validation as part of a larger big data
workflow. The case study results demonstrate the importance of data validation
in the big data process, both for confidence in the outputs and for making big data
applications more useful in the civil engineering field.

BACKGROUND ON BIG DATA APPLICATIONS IN CIVIL
ENGINEERING



Civil engineering deals with a massive amount of data be that in the design,
construction, and maintenance of infrastructure such as roads, bridges, buildings,
or other infrastructure such as water systems. Between these infrastructures a vast
amount of data is produced, including sensor data, traffic data, weather data, and
maintenance records. In recent years, big data analytics has emerged as a powerful
tool in civil engineering for analysing and making sense of this vast amount of
data. This i1s evidenced by the various studies that make use of big data
applications such as; [3] in which data from a population of structures is used to
make insights into induvial structures; and [4]where a data-driven method for
detecting damage to structures is presented. A review of some of the opportunities
presented by big data applications and some current research is presented in [5].
By applying big data analytics to these datasets, civil engineers can gain valuable
insights into infrastructure performance, identify patterns and trends, and develop
effective management strategies. This, in turn, can lead to more efficient
maintenance and repair, improved safety, and cost savings.

BENEFITS OF BIG DATA IN PROVIDING INSIGHTS AND
PREDICTIONS INTO LARGE DATASETS

Utilising big data analytics can provide numerous advantages when it comes
to obtaining insights or making predictions from large datasets. Below are a few
of the benefits and examples of how that may be applied to engineering.

Identifying patterns and trends: Big data analytics is capable of identifying
patterns and trends within large datasets that may not be easily noticeable through
traditional analysis methods. For instance, civil engineers can analyse traffic data
over an extended period to identify traffic patterns like peak hours and congestion
hotspots.

Predictive analytics: Using big data applications, it's possible to create
predictive models that can forecast future events or trends based on historical data.
An example of this is when engineers analyse maintenance records and sensor
data from a bridge to predict when it will require repairs or maintenance.

Improved decision-making: An additional benefit to identifying patterns and
trends is that it can also aid the decision-making process. For instance, engineers
can make informed choices about which materials to use in upcoming projects by
examining data on the properties of various materials utilised in previous
construction projects.

DATA VALIDATION IN BIG DATA APPLICATIONS

Data validation is the process of ensuring that data is accurate, complete, and
consistent. Generally, data validation aims to ensure that the data is credible and
error-free so that any outputs resulting from using the data are accurate and can
be reliably used. [6] presents an overview of data validation across different
industries and some of the overarching concepts. The reasons why data validation
is important vary from field to field but there are some reasons that are common
to all types of data and applications. Accuracy is the most obvious and possibly
the most important. While the accuracy of data is vital in any data analysis in big
data even small errors in input data can cause significant errors in the results. This
problem is worsened because it is common for big data applications to use black
box methods or at least methods that are difficult to understand how outputs are
processed from the inputs. Thus, making it harder to detect errors when reviewing



results. Other reasons to undertake data validation is to ensure the completeness
and consistency of the dataset. The completeness of a dataset refers to if there is
any missing data. Missing data may be significant and may mean that certain
insights may be overlooked or the predictive power of the model may be reduced.
Consistency of data comes into focus when using multiple datasets as part of your
inputs. Consistency refers to aspects like the units of your data; the format of your
dates; the capitalisation of letters. All these properties if not consistent will most
likely invalidate any comparisons that are made between the datasets. The last
reason for data validation, which is sometimes overlooked, is trust in the
applications/method. This can be a large factor if the big data application is used
for something such as decision-making. Errors in the input data that result in poor
decision can quickly erode stakeholder’s trust and make it far less likely to be
used in the future.

METHODS FOR DATA VALIDATION

This section will look at some of the methods that can be used for data
validation. While there is no definitive set of methods that can be used in all
situations, the broader categories of data validation will be discussed here and as
well as some common methods that can be used.

SYNTAX VALIDATION

Syntax validation is the process of checking data to ensure that it follows the
correct format. Generally, there will be a set of predefined rules or schema that
the data will be compared to ensuring it is in the correct format. Syntax validation
will ensure that there is consistency in the dataset. This type of validation is very
important if a large number of datasets are going to be used in the analysis.
Examples of syntax validation would include checking the format of a date or
checking that there are only numbers contained within a certain measurement
field.

SEMANTIC VALIDATION

Semantic validation focuses more on the actual content and context of the
data. This type of validation checks for such issues as logical errors or internal
inconsistencies. Again, like the syntax validation a predefined set of rules can be
used to check the data against but this time the checks are to ensure that the data
is meaningful for the intended use. Examples of semantic validation would be
checking if an air temperature reading falls within a given range for the location
and time of year. An air temperature reading of 100°C would pass a syntax
validation check but may not pass a semantic validation check.

FIELD-LEVEL VALIDATIONS

Field-level validation describes the method of checking data on a field-by-
field basis. This type of validation is used to check common errors such as missing
values and incorrect syntax. These errors are not dependent on any other aspects
of the data and so can be checked on a field-by-field basis.

CROSS-FIELD VALIDATION



The cross-field validation method involves checking the relationships
between fields within a dataset to ensure that they are behaving as expected. This
type of validation can discover errors in the data that may not be apparent when
using a field-level validation. Examples of cross-field validation would be
ensuring that the time values are in a particular order or that the temperatures that
are recorded during the night and less than those recorded during the day. The use
of cross-field validation can give confidence and credibility to the dataset before
use in a big data application.

STATISTICAL VALIDATIONS

Statistical validation encompasses a wide range of methods but in general, it
is the process of using statistical methods to find any issues/problems with a
dataset. One of the most common methods that fall under this category is outlier
detection, here statistics from the data will be compared to individual observations
and any that deviate too far from a central value would be considered an outlier.
Other forms of statistical validation include comparisons of data distributions this
method gives a quick way to determine if a dataset conforms to an
expected/predicted distribution and allows for a range of issues to be detected
such as repeated values and rounding errors.

CASE STUDY: VALIDATION OF DATA FROM FOUR BRIDGES

This section presents a case study in which data was collected for 21 days
across four bridges. The presented case study was part of a larger piece of work
that involves ongoing data collecting, this case study gives a template for how to
validate the data that has been collected as well as how to validate future data.

COLLECTION OF DATA

The bridges used in this case study are a mixture of different span lengths,
span numbers and construction types. The four bridges chosen have span lengths
ranging from 8.9 m — 98 m with span numbers ranging from 1 — 3. The
construction type/material of these bridges also varied as the sample includes a
steel bridge, reinforced concrete bridges and a steel-concrete composite bridge.

The SHM system used to collect the data consisted of one MEMS
accelerometer and one environmental. The accelerometer used was a
Multifunction Extended Life (MEL) accelerometer. This accelerometer measures
acceleration in 3 axes within a range of £ 2 g and has a real-time clock to
timestamp every acceleration measurement. The sensor data is stored locally on
an SD card at a sample rate of 128 Hz and is powered from an internal battery.

The environmental sensors used were the ‘OM-EL-USB Series’ from Omega
Engineering. The environmental sensors measure both air temperature and
humidity and, like the accelerometers, store the data locally with a corresponding
timestamp.

VALIDATION OF DATA

In this section, the steps that were undertaken to validate the acceleration and
environmental data will be presented. As discussed in the previous section, there



is no all-purpose validation procedure and the steps presented in this section are
tailored to the collected dataset. The use of data is an important factor in the data
validation process. For this case study, it is assumed that the data will be used to
predict future data for each of the bridges and make comparisons between the
bridges. Because of this data consistency becomes a factor between each of the
datasets.

ACCELERATION DATA

Figure 1 shows a sample of the acceleration data that is representative of the
data that was collected across all four bridges across the monitoring period.
Plotting a sample of the data in this way allows for basic checks on the data such
as if the acceleration data looks credible and the data being centered around 9.8
m/s? due to the effects of gravity.

Step 1: Check for missing data and syntax of data.

The first and most basic check was for missing data and to ensure the correct
syntax of the data. Here a simple script was written to undertake a field-level
validation check. The script first checked for any NaN or null values and then
checked that the acceleration, reading consisted of only floating numbers and that
the date format was consistently in the format of DD/MM/YY HH:MM:SS:sss.

Step 2: Verify the sampling rate of the data.

The sampling rate of each of the four monitoring systems was set at 128 Hz. It is
important for this to be consistent as processing the data to extract features such
as the natural frequency will be altered by varying sample rates. A field-level
validation check was undertaken on the timestamps of the data to ensure the
difference between consecutive steps was 7.8125 e-3 seconds.

Step 3: Check for and clipping of the acceleration data.

The accelerometers being used have a measurement range of =+ 2 g. In this step,
the values of the acceleration data are checked to ensure that the magnitude of any
values does not exceed 2 g. While during normal operation the accelerations
would never come close to their measurement limit if a value of 2 g was recorded
it may indicate that the accelerometer was struck by something or that the sensor
is not functioning as expected.

Step 4: Statistical validation of the acceleration data.

There are some basic statistical methods that are valid for all most all continuous
datasets. TABLE I shows the mean and interquartile ranges of the four bridge
datasets. These basic statistical properties allow domain knowledge to be used to
check if the data behaves as expected. In the presented dataset the accelerometer
should be measuring the gravity constant so the acceleration experienced by the
bridge should be centred around 9.81 m/s?.
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Figure 1. Sample of the collected acceleration data



TABLE I. Basic statical properties of the four bridge datasets

Bridge Ref. Mean (g) Interquartile range (g)
Bridge 1 ‘ 9.8049 0.0132
Bridge 2 9.7557 0.0119
Bridge 3 ‘ 9.8068 0.0119
Bridge 4 9.8418 0.0117

From TABLE I it can be seen that the actual mean values range from 9.7557 m/s?
to 9.8418 m/s%, this is caused by discrepancies in the calibration of the sensors.
For the analysis of the data, the data can either be detrened so that the mean is 0
for all data sets or the calibration factor changed so that the data mean is the same
for each dataset. The interquartile ranges of the datasets vary between 0.117 m/s?
and 0.132 m/s” from experience this is the range that would be expected as the
bridges vary in both their construction and span length.

The distributions of the acceleration can also be studied. Figure 2 shows the
distribution of the accelerations across the monitoring period for bridge 1. From
this figure, we can see that the distribution is approximately normal, centred
around 9.81 g and showing no significant skew. These properties are what is
expected and give credibility to the datasets.
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Figure 2. Histogram showing the distribution of acceleration data for bridge 1

ENVIRONMENTAL DATA

The environmental data consists of air temperature and air humidity readings.
For the validation of this data steps 1 and 2 described in the last section are largely
the same. During the validation of the timestamps, an issue was found regarding
the adjusted daylight saving time which was not present in the acceleration data.
If left unchecked this would have caused the temperature data and acceleration
data to be out of sync by 1 hour.

For the statistical validation the same process was followed, first, check to
ensure that the range of temperature readings was realistic for the time of year.
The distribution of the temperature data again showed the expected normal
distribution. The distribution for the humidity readings was skewed towards the
100% range. After some research into this, it was determined that that was not
uncommon for the location of the bridges.
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Figure 3. Temperature data over 7 days from each of the monitored bridges as well as met
office data for the same period

As a final check for the temperature data to ensure that it was credible, it was
compared to data from a nearby weather station. Figure 3 shows seven days of
temperature data with the blue, orange, purple and green lines representing
bridges 1, 2, 3 and 4, respectively. Temperature data between each of the bridges
is fairly consistent, albeit with slight differences depending on the location of the
bridge. The corresponding air temperature from the weather station is also plotted
(green line). This Met Office weather station ranges from 11 to 14.5 miles from
the four monitored bridges. The broad temperature trends at all 4 of the bridges
match well with the met office air temperature. There are some small differences,
but this is likely due to the met office temperature being taken in a weather station
whereas the temperature at the bridges is taken close to a structure which could
account for the slight differences.

The case study presented here was a small proportion of a much larger dataset.
The steps described give a basis for a workflow to be developed for the validation
of this dataset. This workflow can in turn be used as a template to develop
automatic processes that can be applied to the larger dataset and to any newly
collected data.

RECOMMENDATIONS FOR IMPLEMENTING DATA VALIDATION IN
A BIG DATA WORKFLOW

As stated throughout this paper there is no one process or method that can be
used on all datasets. The correct data validation methodology will be based on the
data and the intended use of that data. However, there are some strategies that can
be applied to all data validation problems. Some of these strategies are described
below:

Define data quality standards: The big data application that will be used to
process the data will inform what data quality standards will be needed. The
quality standards would include such criterial as: the required accuracy to the data,
the required completeness of the data and which parts of the data do and do not
require validation.

Define a validation methodology: It is always advisable to create a plan for
the validation of data. This both allows for the consistency on how the data is
validated and gives a method to allow new data to be validated in the same way.
The validation methodology could include such information as: what methods are
going to be used, any schema of predefined lists that the data will be compared
to, if automation will be used.



Monitor the data: Depending on the size of the dataset and the amount of
new data being added to the dataset you may be required to automate the data
validation process. If this is the case having a process in place to sample and test
your data to ensure that the validation is processing the data as expected/planned
may be beneficial.

CONCLUSION

The use of big data applications is becoming more popular in all field and civil
engineering is no different. The benefits of these applications are clear and there
is a significant potential for improving decision-making process regarding
infrastructure and gaining insights into datasets that may otherwise be missed.
However, the fact still remains that the output from any analysis, including that
of big data is only as good as the inputs. Data validation of a dataset ensures that
the input data meets the requirements of the application. The specific requirement
will change from project to project but every application will have an underlying
assumption of quality data. In this paper, the broad categories of validation have
been discussed and examples are given of how they may be applied to different
datasets. The case study presented shows how a validation methodology may be
applied to data and the reason why certain techniques may be used.

Data validation has always been an important step in the analysis of data,
however, this process becomes critical in big data applications. When the amount
of data grows to the point where manual checking of inputs is not feasible or the
analysis methods used are black box techniques, then data validation adds
repeatability, credibility and accuracy to the outputs of the application.
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