
ABSTRACT 

Pitting corrosion is a prevalent form of corrosive damage that can weaken, damage, 
and initiate failure in corrosion-resistant metallic materials. For instance, 304 stainless 
steel is commonly utilized in various structures (e.g., miter gates, heat exchangers, and 
storage tanks), but is prone to failure through pitting corrosion and stress corrosion 
cracking under mechanical loading, regardless of its high corrosion resistance. The pit 
growth typically follows a sigmoidal trend with an initial high growth rate during 
nucleation, followed by an eventual saturation limit, which will ultimately lead to 
material failure. In this study, to better understand the pitting corrosion damage 
development, controlled corrosion experiments were conducted to generate pits on 304 
stainless steel specimens with and without mechanical loading. The pit development 
over time was characterized using a high-resolution laser scanner. In addition, to achieve 
scalable and automatic assessment of pitting corrosion conditions, a convolutional 
neural network-based computer vision algorithm was adopted and implemented to 
identify the existence of pitting damage. 

INTRODUCTION 

Pitting corrosion is a form of localized corrosion that most commonly occurs in 
marine environment due to the presence of chloride ions (Cl-) in salt spray, which can 
affect various structures, including miter gates, ships, docks, bridges, and nuclear plants 
[1]. While stainless steel is inherently resistant against general corrosion through 
alloying of Chromium and Nickel, pitting corrosion can bypass the passivating oxide 
layer on stainless steel with the presence of permeable ions or cracks in the oxide layer, 
leading to local anodic behavior in the metal underneath the protective layer. When 
exposed to an electrolytic solution (e.g., one with high Cl- concentration), local galvanic 
cells will be formed and cause the growth of pits. Corrosive products can often cover 
damage around local cathodic regions, making damage difficult to detect [2]. 
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Pitting corrosion can not only compromise the mechanical properties of structural 

steels, but also cause intergranular stress corrosion cracks (SCCs), augmenting material 

fracture mode [3]. It remains very challenging to isolate, measure, or reliably 

characterize the SCCs, due to their complex propagation at micro-scale. In addition, 

although load-bearing structural members may exhibit different corrosion behavior 

depending on the loading conditions, to the best of the authors’ knowledge, limited 

studies have been conducted on the effect of mechanical loading on the propagation of 

pitting corrosion. 

Furthermore, in the context of pitting corrosion detection and evaluation, current 

techniques are relatively limited and ineffective. For instance, the “Standard Guide for 

Examination and Evaluation of Pitting Corrosion” (i.e., ASTM G46-21) outlines several 

different ways to evaluate pitting corrosion, including visual inspection, profilometry, 

metal penetration, statistical modelling, and eddy currents [4]. Another commonly used 

approach is the field signature method [5]. These techniques typically require highly 

trained human inspectors, have inconsistent measurements, and are non-versatile for 

different structures. On the other hand, with the recent advancements in machine 

learning and artificial intelligence, computer vision technique has been demonstrated 

promising for detecting structural anomalies (e.g., concrete cracks, rebar exposure, 

general corrosion, and dynamic modes) [6-8]. 

Therefore, this study aims to not only better understand the pitting corrosion damage 

development through controlled experiments, but also develop computer vision 

algorithms to detect pitting corrosion in an automatic, efficient, and scalable manner. In 

particular, a series of accelerated pitting corrosion experiments was designed and 

performed on 304 stainless steel specimens with and without mechanical loading. The 

pit morphologies were characterized using a high-resolution laser scanner. In addition, 

convolutional neural networks (CNNs) were adopted and implemented to detect the 

existence of pitting damage based on images of steel specimens.  

 

 

EXPERIMENTAL DETAILS 

 

Accelerated Pitting Corrosion Experiment 

 

Here, AISI 304 stainless steel (50.8 × 63.5 × 4.7625 mm3, Metals Depot) was used 

as the test subject, which was corroded in an iron (III) chloride (FeCl3, Sigma-Aldrich) 

aqueous solution. To be specific, the FeCl3 solution was prepared by dissolving 16.22 g 

of FeCl3 powders in 200 mL of deionized (DI) water through stirring. The solution was 

then heated to and maintained at about 50 °C using a hotplate. Prior to being submerged 

in the corrosive solution, each steel specimen was carefully sanded to remove the 

surficial protective oxide layers and washed with DI water. Steel specimens subjected 

to different corrosion time periods (e.g., 1, 2, and 3 hr in this study) could be readily 

generated in a consistent manner, so that pit development at different time instants could 

be investigated. Once the desired corrosion timeframe was reached, the specimen was 

removed from the corrosive solution, washed thoroughly with DI water, and air dried 

for at least a day before inspection. 

Microstructural analysis of the pit damage was performed using scanning electron 

microscopy (SEM) imaging. In addition, to characterize the pit morphology in detail, 

all corroded specimens were inspected using a Micro-Vu Vertex 312UC system that 



   

 

   

 

was equipped with an LSM4-2 laser distance scanner. A central region of 25.4 × 25.4 

mm2 on each specimen was inspected using the LSM4-2 laser to obtain representative 

statistical features of pit morphology. The resolutions of the laser scan along vertical 

and horizontal directions were 4 microns and about 0.03 microns, respectively. 

 

Mechanical Load-Coupled Corrosion Experiment 
 

This study aims to address the current knowledge gap of the effects of mechanical 

loading conditions on pitting corrosion development through conducting controlled 

multiphysics experiments. Figure 1 shows the schematics of the load-coupled corrosion 

experimental setup designed in this study. To be specific, each AISI 304 stainless steel 

specimen (50.8 × 342.9 × 4.7625 mm3, Metals Depot) was fully submerged in the FeCl3 

aqueous solution, which was maintained at about 50 °C using heaters. Note that the 

corrosive solution and specimens were prepared following the same procedures 

described in the previous section. In addition, to apply mechanical loading on the 

specimens in a consistent and controllable manner, a four-point bending setup was 

designed, where the deadweight could be readily changed to achieve desired stress 

levels in the specimens (e.g., 28 MPa maximum tensile and compressive stresses in this 

study). Similar to the accelerated corrosion experiments, once the desired corrosion 

timeframe was reached, each specimen was washed thoroughly with DI water and air 

dried before being inspected using the laser scanner. 

 

 

COMPUTER VISION-BASED DAMAGE DETECTION FRAMEWORK 

 

This study also adopted and implemented the computer vision technique to more 

efficiently identify the existence of pitting damage. Figure 2 demonstrates the workflow 

established in this study for training and implementing the CNN algorithm for detection 

of pitting corrosion. First, the CNN was trained by establishing an image library. Based 

on the experimental samples obtained from the accelerated corrosion tests, the training 

and testing image library was established by partitioning seven high-resolution (443-

by-340 pixel) images to sub-images of 31-by-31-pixel. The partitioning was necessary 

for generating a library large enough to test the efficacy of the CNN from limited 

numbers of specimens. These partitioned images were then manually labeled into two 

identification classes (i.e., pits and no pits). The training library has a total of 1,093 

 

Figure 1. Schematics of mechanical load-coupled corrosion experimental setup. 

 



   

 

   

 

images with 740 images containing pits and 353 images without pits. After the classes 

were established, the library was then imported into the CNN algorithm in the 

MATLAB software, where it was separated further into a training set (70 %) and a 

validation set (30%) for each class.  

The algorithm also performed image augmentations to prevent the CNN from 

memorizing the training set, forcing it to search for image features instead. These 

augmentation procedures involved randomly reflecting the images as well as translating 

the image up to 30 pixels horizontally and vertically. The MATLAB-based CNN 

algorithm then used the training and validation sets to train and test the CNN, 

respectively. The CNN trainer included three 3×3 kernel convolutional layers separated 

by three 2×2 max pooling layers with associated rectified linear unit (ReLU) layers, as 

shown in Figure 2. The results of these filters were then passed into the fully connected 

layer, connecting every input node to every output node by multiplying the input by a 

weight matrix and then adding a bias vector. This allowed the CNN algorithm to 

interpret the results of the training data and input images to create the neural network. It 

should be noted that to implement the CNN technique in the field, the same algorithm 

could be used by expanding the library with images of structures in the field and 

laboratory specimens, so that the trained CNN algorithm could inform the inspectors 

whether pit damage is present and the severity of the pitting. 

 

 

RESULTS AND DISCUSSION 

 

Pitting Corrosion Experiments 

 

First, the accelerated pitting corrosion experimental procedures optimized in this 

study were found capable of exclusively generating pit damage on stainless steel, which 

facilitated the investigation of pit development under different conditions. Figure 3 

 

Figure 2. Schematics of the workflow of CNN-based computer vision technique for identifying the 

existence of pitting damage. 

 



   

 

   

 

shows the SEM images of a specimen subjected to a three-hour accelerated corrosion 

experiment. One can observe that the pits possessed diameters ranging from 1 micron 

to several millimeters. This indicates that pitting was a corrosive process that began at 

micro-scale and propagated to macro-scale through an autocatalytic reaction. The pits 

were found randomly distributed with distinguishable local anodic and cathodic regions. 

In addition, from the high magnification images (Figures 3c and 3d), intergranular 

cracks were also observed, which are typically the result of preferable corrosion at 

chromium-depleted zones adjacent to the austenitic grain boundaries of the stainless 

steel. 

In addition, this study also utilized a high-resolution laser scanner to characterize 

the morphologies of pits on each corroded specimen. The laser scan data, composed of 

three-dimensional (3D) coordinates, were calibrated for each specimen’s surface slope, 

so that the baseline depth (i.e., without pits) was 0 and pit depth was negative value 

along z direction. Table I summarizes pit inspection results of both the accelerated 

corrosion and the load-coupled corrosion experiments. It can be seen that pit depths 

were highly consistent among different specimens with low standard deviations and 

exhibited a steady increase in tandem with corrosion time periods (i.e., 1 hr to 3 hr). The 

pit depths were also relatively similar among all three load cases (i.e., no loading, 

tension, and compression).  

On the other hand, pit surface opening areas were found affected by the mechanical 

loading conditions. In particular, compared to the average surface opening area of pits 

on the specimens subjected only to corrosion (without loading), tensile stress 

significantly decreased the pit opening areas, whereas compressive stress increased the 

areas. The difference in surface opening area became more prominent when comparing 

the depth-to-area ratios of the pits, which clearly showed that pits on the tension side of 

specimens had significantly higher ratios. Note that the calculated average surface 

opening areas exhibited relatively high standard deviations, which could be caused by 

pits developed at different stages that were all captured by the laser scanner.   

 

Figure 3. SEM images under different magnifications of pits on a stainless steel specimen subjected 

to a three-hour accelerated corrosion experiment. 
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To further demonstrate the difference in pit morphologies caused by mechanical 

loading, Figure 4 shows color contour plots of the tension and compression sides of a 

specimen subjected to a three-hour load-coupled corrosion experiment. Although both 

tension and compression sides had similar numbers of pits (297 and 183 pits, 

respectively), the pits on the compression side (Figure 4b) were very visible due to their 

large surface opening areas. Figures 4c-4f show zoomed-in views of the morphologies 

of representative individual pits, which demonstrate that pits generated under tensile 

stress were as deep, but more localized.  

Due to the observed pit morphologies, under the same stress level, pits developed 

under tensile stress could induce higher stress concentration effects and initiate earlier 

SCC and material failures. In addition, since the surface opening area of pits generated 

under compressive stress was larger, visual inspectors and computer vision-based 

techniques could identify those pits more easily. On the other hand, pits under tension 

may be challenging to be visually detected due to their small surface areas, even though 

they could be more likely to initiate failures in structural steels.  

 

Computer Vision-Based Damage Identification  

 

This study also trained and implemented a CNN algorithm for detecting pitting damage 

based on images of steel specimens. After being trained using the limited image library 

outlined previously, the CNN algorithm had an identification accuracy of nearly 84.4%. 

Here, the accuracy was used as a measure of how often the CNN was correct overall in 

identifying both true positive (i.e., pits exist) and true negative (i.e., no pit exists) 

classifications. The accuracy of trained CNN was considered relatively high, given the 

limited dataset and low resolution of the sub-images due to the level of partitioning. 

Figure 5a shows an example of the CNN output for the validation images, where both 

classification results were correct. In addition, to avoid overfitting to the training data, 

six epochs were used for training in this study. As shown in Figure 5b, the sixth epoch 

TABLE I. EXPERIMENTAL RESULTS OF THE 50 DEEPEST PITS 

Sample Top 50 Deepest Pits 

Time 

(hr) 

Load 

Case 
Load Type 

Average 

Depth 

(mm) 

Standard 

Deviation 

(mm) 

Average 

Surface 

Opening 

Area (mm2) 

Standard 

Deviation 

(mm2) 

Depth/Area 

Ratios of 

the 50 

Deepest Pits  

1 

Corrosion 

Only 
N/A -0.221 0.0364 0.0331 0.0082 6.68 

28 MPa 
Compression -0.284 0.0077 0.0362 0.0137 7.86 

Tension -0.266 0.0134 0.0081 0.0061 32.86 

2 

Corrosion 

Only 
N/A -0.327 0.0351 0.0300 0.0213 10.91 

28 MPa 
Compression -0.344 0.0335 0.1338 0.0978 2.57 

Tension -0.324 0.0322 0.0085 0.0065 38.14 

3 

Corrosion 

Only 
N/A -0.454 0.0275 0.0277 0.0236 16.41 

28 MPa 
Compression -0.412 0.0485 0.0617 0.0447 6.68 

Tension -0.377 0.0670 0.0176 0.0161 21.43 

 

 



   

 

   

 

training began approaching to 100% accuracy. This indicates that further training using 

the current dataset would likely lead to overfitting to this specific training library, 

instead of learning the features of pitting corrosion.  The CNN algorithm could be 

further trained with a larger image library that includes images of both laboratory 

specimens and structures in the field, which would allow the algorithm to learn more 

image features, achieve higher accuracy, and ultimately become sufficiently robust to 

 

Figure 5. a) Examples of validation outputs of the trained CNN algorithm. b) Accuracy plot during 

training with blue line showing the smoothed training data and black line showing the validation 

accuracy at the end of each iteration. 
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Figure 4. Color contour plots of 25.4 × 25.4 mm2 central regions on the a) tension and b) 

compression sides of a steel specimen subjected to 3-hr of load-coupled corrosion experiment. c) 

and d) Zoomed-in views of individual pits highlighted in a) and b), respectively. e) and f) 

Visualization of 3D morphologies of pits shown in c) and d), respectively.    
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detect pitting damage in the field. Furthermore, computer vision-enabled inspection can 

potentially be coupled with computational corrosion models to predict pit development 

and its effects on structural performance, which will significantly facilitate timely 

structural maintenance. 

 

 

CONCLUSION 

 

This study aims to not only develop experimental procedures to consistently 

generate pitting corrosion on structural steels, including accelerated corrosion 

experiments and load-coupled corrosion experiments, but also train and implement the 

CNN-based computer vision technique for detecting pitting damage. The developed 

corrosion experimental procedures were highly controllable and can be potentially 

implemented to study complex corrosion behavior of various metals. The laser scan-

based results indicated that applied load could affect the pit morphology, where 

compressive stress led to larger surface opening area, whereas tensile stress induced 

much smaller openings. Therefore, pits formed under tensile stress could increase stress 

concentration more significantly, leading to earlier SCC and material failures. 

Furthermore, the CNN algorithm trained in this study possessed a high accuracy of 

84.4%, even with the limited library currently available, making it a promising tool for 

detecting pitting corrosion in an efficient, automatic, and scalable manner. 
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