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ABSTRACT

Pitting corrosion is a prevalent form of corrosive damage that can weaken, damage,
and initiate failure in corrosion-resistant metallic materials. For instance, 304 stainless
steel is commonly utilized in various structures (e.g., miter gates, heat exchangers, and
storage tanks), but is prone to failure through pitting corrosion and stress corrosion
cracking under mechanical loading, regardless of its high corrosion resistance. The pit
growth typically follows a sigmoidal trend with an initial high growth rate during
nucleation, followed by an eventual saturation limit, which will ultimately lead to
material failure. In this study, to better understand the pitting corrosion damage
development, controlled corrosion experiments were conducted to generate pits on 304
stainless steel specimens with and without mechanical loading. The pit development
over time was characterized using a high-resolution laser scanner. In addition, to achieve
scalable and automatic assessment of pitting corrosion conditions, a convolutional
neural network-based computer vision algorithm was adopted and implemented to
identify the existence of pitting damage.

INTRODUCTION

Pitting corrosion is a form of localized corrosion that most commonly occurs in
marine environment due to the presence of chloride ions (Cl-) in salt spray, which can
affect various structures, including miter gates, ships, docks, bridges, and nuclear plants
[1]. While stainless steel is inherently resistant against general corrosion through
alloying of Chromium and Nickel, pitting corrosion can bypass the passivating oxide
layer on stainless steel with the presence of permeable ions or cracks in the oxide layer,
leading to local anodic behavior in the metal underneath the protective layer. When
exposed to an electrolytic solution (e.g., one with high Cl- concentration), local galvanic
cells will be formed and cause the growth of pits. Corrosive products can often cover
damage around local cathodic regions, making damage difficult to detect [2].

Riley J. Muehler, Joshua B. Venz, and Long Wang*, California Polytechnic State University,
San Luis Obispo, CA, 93407, USA.

Michael D. Todd, University of California-San Diego, La Jolla, CA, 92093, USA.
*Corresponding author e-mail: Iwang38@calpoly.edu


mailto:lwang38@calpoly.edu

Pitting corrosion can not only compromise the mechanical properties of structural
steels, but also cause intergranular stress corrosion cracks (SCCs), augmenting material
fracture mode [3]. It remains very challenging to isolate, measure, or reliably
characterize the SCCs, due to their complex propagation at micro-scale. In addition,
although load-bearing structural members may exhibit different corrosion behavior
depending on the loading conditions, to the best of the authors’ knowledge, limited
studies have been conducted on the effect of mechanical loading on the propagation of
pitting corrosion.

Furthermore, in the context of pitting corrosion detection and evaluation, current
techniques are relatively limited and ineffective. For instance, the “Standard Guide for
Examination and Evaluation of Pitting Corrosion” (i.e., ASTM G46-21) outlines several
different ways to evaluate pitting corrosion, including visual inspection, profilometry,
metal penetration, statistical modelling, and eddy currents [4]. Another commonly used
approach is the field signature method [5]. These techniques typically require highly
trained human inspectors, have inconsistent measurements, and are non-versatile for
different structures. On the other hand, with the recent advancements in machine
learning and artificial intelligence, computer vision technique has been demonstrated
promising for detecting structural anomalies (e.g., concrete cracks, rebar exposure,
general corrosion, and dynamic modes) [6-8].

Therefore, this study aims to not only better understand the pitting corrosion damage
development through controlled experiments, but also develop computer vision
algorithms to detect pitting corrosion in an automatic, efficient, and scalable manner. In
particular, a series of accelerated pitting corrosion experiments was designed and
performed on 304 stainless steel specimens with and without mechanical loading. The
pit morphologies were characterized using a high-resolution laser scanner. In addition,
convolutional neural networks (CNNs) were adopted and implemented to detect the
existence of pitting damage based on images of steel specimens.

EXPERIMENTAL DETAILS
Accelerated Pitting Corrosion Experiment

Here, AISI 304 stainless steel (50.8 x 63.5 x 4.7625 mm?, Metals Depot) was used
as the test subject, which was corroded in an iron (IIT) chloride (FeCls, Sigma-Aldrich)
aqueous solution. To be specific, the FeCls solution was prepared by dissolving 16.22 g
of FeCls powders in 200 mL of deionized (DI) water through stirring. The solution was
then heated to and maintained at about 50 °C using a hotplate. Prior to being submerged
in the corrosive solution, each steel specimen was carefully sanded to remove the
surficial protective oxide layers and washed with DI water. Steel specimens subjected
to different corrosion time periods (e.g., 1, 2, and 3 hr in this study) could be readily
generated in a consistent manner, so that pit development at different time instants could
be investigated. Once the desired corrosion timeframe was reached, the specimen was
removed from the corrosive solution, washed thoroughly with DI water, and air dried
for at least a day before inspection.

Microstructural analysis of the pit damage was performed using scanning electron
microscopy (SEM) imaging. In addition, to characterize the pit morphology in detail,
all corroded specimens were inspected using a Micro-Vu Vertex 312UC system that



was equipped with an LSM4-2 laser distance scanner. A central region of 25.4 x 25.4
mm? on each specimen was inspected using the LSM4-2 laser to obtain representative
statistical features of pit morphology. The resolutions of the laser scan along vertical
and horizontal directions were 4 microns and about 0.03 microns, respectively.

Mechanical Load-Coupled Corrosion Experiment

This study aims to address the current knowledge gap of the effects of mechanical
loading conditions on pitting corrosion development through conducting controlled
multiphysics experiments. Figure 1 shows the schematics of the load-coupled corrosion
experimental setup designed in this study. To be specific, each AISI 304 stainless steel
specimen (50.8 x 342.9 x 4.7625 mm?, Metals Depot) was fully submerged in the FeCls
aqueous solution, which was maintained at about 50 °C using heaters. Note that the
corrosive solution and specimens were prepared following the same procedures
described in the previous section. In addition, to apply mechanical loading on the
specimens in a consistent and controllable manner, a four-point bending setup was
designed, where the deadweight could be readily changed to achieve desired stress
levels in the specimens (e.g., 28 MPa maximum tensile and compressive stresses in this
study). Similar to the accelerated corrosion experiments, once the desired corrosion
timeframe was reached, each specimen was washed thoroughly with DI water and air
dried before being inspected using the laser scanner.

COMPUTER VISION-BASED DAMAGE DETECTION FRAMEWORK

This study also adopted and implemented the computer vision technique to more
efficiently identify the existence of pitting damage. Figure 2 demonstrates the workflow
established in this study for training and implementing the CNN algorithm for detection
of pitting corrosion. First, the CNN was trained by establishing an image library. Based
on the experimental samples obtained from the accelerated corrosion tests, the training
and testing image library was established by partitioning seven high-resolution (443-
by-340 pixel) images to sub-images of 31-by-31-pixel. The partitioning was necessary
for generating a library large enough to test the efficacy of the CNN from limited
numbers of specimens. These partitioned images were then manually labeled into two
identification classes (i.e., pits and no pits). The training library has a total of 1,093
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Figure 1. Schematics of mechanical load-coupled corrosion experimental setup.
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Figure 2. Schematics of the workflow of CNN-based computer vision technique for identifying the
existence of pitting damage.

images with 740 images containing pits and 353 images without pits. After the classes
were established, the library was then imported into the CNN algorithm in the
MATLAB software, where it was separated further into a training set (70 %) and a
validation set (30%) for each class.

The algorithm also performed image augmentations to prevent the CNN from
memorizing the training set, forcing it to search for image features instead. These
augmentation procedures involved randomly reflecting the images as well as translating
the image up to 30 pixels horizontally and vertically. The MATLAB-based CNN
algorithm then used the training and validation sets to train and test the CNN,
respectively. The CNN trainer included three 3x3 kernel convolutional layers separated
by three 2x2 max pooling layers with associated rectified linear unit (ReLU) layers, as
shown in Figure 2. The results of these filters were then passed into the fully connected
layer, connecting every input node to every output node by multiplying the input by a
weight matrix and then adding a bias vector. This allowed the CNN algorithm to
interpret the results of the training data and input images to create the neural network. It
should be noted that to implement the CNN technique in the field, the same algorithm
could be used by expanding the library with images of structures in the field and
laboratory specimens, so that the trained CNN algorithm could inform the inspectors
whether pit damage is present and the severity of the pitting.

RESULTS AND DISCUSSION
Pitting Corrosion Experiments
First, the accelerated pitting corrosion experimental procedures optimized in this

study were found capable of exclusively generating pit damage on stainless steel, which
facilitated the investigation of pit development under different conditions. Figure 3



shows the SEM images of a specimen subjected to a three-hour accelerated corrosion
experiment. One can observe that the pits possessed diameters ranging from 1 micron
to several millimeters. This indicates that pitting was a corrosive process that began at
micro-scale and propagated to macro-scale through an autocatalytic reaction. The pits
were found randomly distributed with distinguishable local anodic and cathodic regions.
In addition, from the high magnification images (Figures 3c and 3d), intergranular
cracks were also observed, which are typically the result of preferable corrosion at
chromium-depleted zones adjacent to the austenitic grain boundaries of the stainless
steel.

In addition, this study also utilized a high-resolution laser scanner to characterize
the morphologies of pits on each corroded specimen. The laser scan data, composed of
three-dimensional (3D) coordinates, were calibrated for each specimen’s surface slope,
so that the baseline depth (i.e., without pits) was 0 and pit depth was negative value
along z direction. Table I summarizes pit inspection results of both the accelerated
corrosion and the load-coupled corrosion experiments. It can be seen that pit depths
were highly consistent among different specimens with low standard deviations and
exhibited a steady increase in tandem with corrosion time periods (i.e., 1 hr to 3 hr). The
pit depths were also relatively similar among all three load cases (i.e., no loading,
tension, and compression).

On the other hand, pit surface opening areas were found affected by the mechanical
loading conditions. In particular, compared to the average surface opening area of pits
on the specimens subjected only to corrosion (without loading), tensile stress
significantly decreased the pit opening areas, whereas compressive stress increased the
areas. The difference in surface opening area became more prominent when comparing
the depth-to-area ratios of the pits, which clearly showed that pits on the tension side of
specimens had significantly higher ratios. Note that the calculated average surface
opening areas exhibited relatively high standard deviations, which could be caused by
pits developed at different stages that were all captured by the laser scanner.

Figure 3. SEM images under different magnifications of pits on a stainless steel specimen subjected
to a three-hour accelerated corrosion experiment.



TABLE I. EXPERIMENTAL RESULTS OF THE 50 DEEPEST PITS

Sample Top 50 Deepest Pits
. Average | Standard Average Standard Deptl.llArea
Time Load . . Surface . . Ratios of
Load Type Depth | Deviation . Deviation
(hr) Case (mm) (mm) Opening (mm?) the 50
Area (mm?) Deepest Pits
Corrosion N/A -0.221 0.0364 0.0331 0.0082 6.68
Only
1 Compression -0.284 0.0077 0.0362 0.0137 7.86
28 MPa
Tension -0.266 0.0134 0.0081 0.0061 32.86
Corrosion N/A 20.327 | 0.0351 0.0300 0.0213 10.91
Only
2 Compression | -0.344 0.0335 0.1338 0.0978 2.57
28 MPa
Tension -0.324 0.0322 0.0085 0.0065 38.14
C"gr‘l’ls;on N/A 20454 | 0.0275 0.0277 0.0236 16.41
3 Compression -0.412 0.0485 0.0617 0.0447 6.68
28 MPa
Tension -0.377 0.0670 0.0176 0.0161 21.43

To further demonstrate the difference in pit morphologies caused by mechanical
loading, Figure 4 shows color contour plots of the tension and compression sides of a
specimen subjected to a three-hour load-coupled corrosion experiment. Although both
tension and compression sides had similar numbers of pits (297 and 183 pits,
respectively), the pits on the compression side (Figure 4b) were very visible due to their
large surface opening areas. Figures 4c-4f show zoomed-in views of the morphologies
of representative individual pits, which demonstrate that pits generated under tensile
stress were as deep, but more localized.

Due to the observed pit morphologies, under the same stress level, pits developed
under tensile stress could induce higher stress concentration effects and initiate earlier
SCC and material failures. In addition, since the surface opening area of pits generated
under compressive stress was larger, visual inspectors and computer vision-based
techniques could identify those pits more easily. On the other hand, pits under tension
may be challenging to be visually detected due to their small surface areas, even though
they could be more likely to initiate failures in structural steels.

Computer Vision-Based Damage Identification

This study also trained and implemented a CNN algorithm for detecting pitting damage
based on images of steel specimens. After being trained using the limited image library
outlined previously, the CNN algorithm had an identification accuracy of nearly 84.4%.
Here, the accuracy was used as a measure of how often the CNN was correct overall in
identifying both true positive (i.e., pits exist) and true negative (i.e., no pit exists)
classifications. The accuracy of trained CNN was considered relatively high, given the
limited dataset and low resolution of the sub-images due to the level of partitioning.
Figure 5a shows an example of the CNN output for the validation images, where both
classification results were correct. In addition, to avoid overfitting to the training data,
six epochs were used for training in this study. As shown in Figure 5b, the sixth epoch
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Figure 4. Color contour plots of 25.4 x 25.4 mm? central regions on the a) tension and b)
compression sides of a steel specimen subjected to 3-hr of load-coupled corrosion experiment. c)
and d) Zoomed-in views of individual pits highlighted in a) and b), respectively. ) and f)
Visualization of 3D morphologies of pits shown in ¢) and d), respectively.

training began approaching to 100% accuracy. This indicates that further training using
the current dataset would likely lead to overfitting to this specific training library,
instead of learning the features of pitting corrosion. The CNN algorithm could be
further trained with a larger image library that includes images of both laboratory
specimens and structures in the field, which would allow the algorithm to learn more
image features, achieve higher accuracy, and ultimately become sufficiently robust to
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Figure 5. a) Examples of validation outputs of the trained CNN algorithm. b) Accuracy plot during
training with blue line showing the smoothed training data and black line showing the validation
accuracy at the end of each iteration.



detect pitting damage in the field. Furthermore, computer vision-enabled inspection can
potentially be coupled with computational corrosion models to predict pit development
and its effects on structural performance, which will significantly facilitate timely
structural maintenance.

CONCLUSION

This study aims to not only develop experimental procedures to consistently
generate pitting corrosion on structural steels, including accelerated corrosion
experiments and load-coupled corrosion experiments, but also train and implement the
CNN-based computer vision technique for detecting pitting damage. The developed
corrosion experimental procedures were highly controllable and can be potentially
implemented to study complex corrosion behavior of various metals. The laser scan-
based results indicated that applied load could affect the pit morphology, where
compressive stress led to larger surface opening area, whereas tensile stress induced
much smaller openings. Therefore, pits formed under tensile stress could increase stress
concentration more significantly, leading to earlier SCC and material failures.
Furthermore, the CNN algorithm trained in this study possessed a high accuracy of
84.4%, even with the limited library currently available, making it a promising tool for
detecting pitting corrosion in an efficient, automatic, and scalable manner.
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