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ABSTRACT 

 

Aircraft structure impact monitoring is important to the safe operation of aircraft. 

However, aircraft structures are often structurally complex, increasing the uncertainty 

of the signal during transmission. Traditional impact monitoring methods need to obtain 

sufficient structural change signals through dense sensor arrays to obtain good 

monitoring results. But too many sensors can increase the cost of operating an aircraft. 

Therefore, this paper adopts sparse sensor array arrangement, proposes a two-step 

impact monitoring strategy from region to point location, and adopts deep learning and 

traditional methods to monitor impact events. Firstly, the test structure is divided into 

several regions of a certain size, and a model capable of accurate regional location is 

trained by convolutional neural network. In this process, in view of the large size of the 

aircraft structure and the difficulty in obtaining training data, the transfer learning 

strategy of model fine-tuning is adopted to transfer the trained feature knowledge of the 

source domain model to the target domain model, reducing the cost required for data 

acquisition and training model. Then in the second step, on the basis of accurate regional 

positioning, weighted centroid method is used to estimate the impact location. 

 

 

1. Introduction 

 

Impact is a common accident form in the process of aircraft service, which will 

damage the integrity of aircraft structure and threaten the safe operation of aircraft. 

Therefore, it is necessary to monitor the impact event. At present, the daily inspection 

of aircraft mainly relies on manual visual inspection, but for such a large structure as 

aircraft, this is a costly work, which takes a lot of labor and time [1]. Therefore, 

automatic monitoring and reporting the impact location can greatly improve the 

efficiency of the work. To solve these problems, the structural health monitoring 

technology (SHM) can be used to achieve continuous monitoring of aircraft impacts 

through a large intelligent sensor network system permanently integrated inside or on 

the surface of the aircraft structure, combined with advanced and efficient intelligent 

monitoring algorithms [2-4]. 

There are two main approaches to impact monitoring: the model-based approach 

and the neural network approach. The model - based method is mainly to build a model 

of the mathematical relationship between "stress wave velocity - arrival time – sensor 

spacing". However, it is difficult to establish an accurate mathematical model because 

the structure is usually complicated and the material parameters are difficult to obtain 

in the actual application process. The method based on neural network usually depends 

on the input and output to adjust the connection weight and connection mode of each 

internal neuron. The advantage is that the process of model establishment is relatively 

simple, while the disadvantage is that a large amount of training data is required for 

training, and the training of the model usually takes a long time. On the other hand, the 

aircraft structure may be damaged in the process of data collection, it is not suitable for 

large-scale data collection. Therefore, data source has become one of the main obstacles 

limiting the application of neural network method in structural health monitoring.1 
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In order to reduce the operational costs brought by the data acquisition system to the 

aircraft load, and the practical problems that training data samples are not easy to obtain. 

In this paper, sparse sensor array is adopted and the impact monitoring strategy is 

adopted from region to point. Firstly, according to the requirements, the structure to be 

tested is divided into a number of small regions that need to be accurately located and 

used as the source domain to collect data. The powerful classification function of 

convolutional neural network is used to convert the regional positioning into a 

classification problem. Then, based on the precise region positioning, weighted centroid 

algorithm is used to predict the impact location. Finally, to solve the problem of 

insufficient data sources of the training model, the transfer learning method of model 

fine-tuning is adopted to transfer the trained knowledge of the source domain model to 

the target domain model, it can reduce the data samples and training time required by 

the training target domain model to reduce the training cost [5-7]. 

 

 

2. Impact monitoring principle 

 

There are many kinds of sensors that can be used to monitor impact, but 

piezoelectric sensors become one of the most common sensors in passive structure 

health monitoring due to their low cost and convenient layout. When an impact occurs, 

the piezoelectric can use the inverse piezoelectric effect to convert stress waves into 

electrical signals that are easier to monitor. A typical passive impact monitoring system 

mainly consists of three parts: monitored structure, data acquisition system, impact 

positioning and evaluation system. 
 

 

3. Convolutional Neural Network 

 

Convolutional neural network (CNN) is a feedforward network mainly composed 

of convolutional layer, pooling layer and fully connected layer. It is good at 

classification tasks. The structure of convolutional neural network is briefly introduced 

below [8, 9]. 

(1) Convolutional layer 

The convolutional operation layer is the core of the whole convolutional neural 

network, which can extract the features of the input data and realize the characteristics 

of local connection and weight sharing of the neural network. Compared with the 

traditional fully connected neural network, the number of parameters of the 

convolutional neural network is greatly reduced. 

(2) Pooling layer 

The function of pooling layer is to compress and reduce the dimension of data, 

which can not only reduce the number of parameters required in the training model 

process, but also reduce the overfitting phenomenon in the training process. 

(3) Activation Function 

 In this paper, the most commonly used Relu function in convolutional neural 

networks is selected as the activation function. The main function of Rel activation 

function is to perform threshold operation on each input value. For input values greater 

than or equal to 0, linear function padding is used. Relu function can greatly accelerate 

the convergence rate of stochastic gradient descent by virtue of its linear unsaturated 

property. 



 

(4)  Fully connected layer 

In order to complete the final classification task, softmax function is selected to 

present the classification result in the form of probability.  

 

 

4. Transfer learning 

 

To obtain a neural network model with good performance, three factors are usually 

required: (1) large quantity and excellent quality data set, (2) a reasonably designed 

network model architecture, and (3) sufficient training time. However, in the real 

background of structural health monitoring, the data is not easy to obtain and the process 

of data acquisition is usually time-consuming and laborious, which greatly limits the 

practical application of neural network in impact monitoring. Therefore, in order to 

solve the problem of high data source and training cost, and expand the application 

ability of neural network, transfer learning has become one of the research directions of 

machine learning [10-12]. 

Because different layers of convolutional neural networks will extract different 

features, the shallow convolutional network layer usually extracts some general features 

such as contour and color, while the deep convolutional network layer can extract 

specific damage features. This paper adopts the transfer learning method of model fine-

tuning. Firstly, a model with good performance is obtained by training source domain 

data. Then the shallow convolutional network layer is frozen and fixed, and the deep 

convolutional layer is retrained. By feeding the trained features of the source domain 

model into the target domain model, a new model can not be trained from scratch, thus 

saving a lot of computing resources and computing time. 

 

 

5. Weighted centroid algorithm 

 

In order to assess whether the impact has caused damage to the structure, it is 

necessary to predict the location of the impact. Due to the sparse sensor array adopted 

in this paper, there are only a few or even no sensors in some positioning areas, which 

restricts some traditional methods based on "arrival time - wave velocity". Therefore, 

the weighted centroid algorithm is adopted in this paper to make more accurate point 

positioning prediction for the location of impact [13]. The schematic diagram of 

weighted centroid algorithm is shown in Figure 1. 

 

 
 

Figure 1. Schematic diagram of weighted centroid location method 

 



 

The weighted centroid location algorithm is shown in Equation (1). When a new 

impact event occurs, the similarity between the new impact signal collected by the 

sensor and the standard point signal obtained in the data acquisition process is calculated 

as the weight of the weighted centroid algorithm. 
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Where, xi and yi are the coordinates of each standard point, and wi is the weight 

assigned to each standard point. When the distance between the new impact point and 

the standard point is closer, the signal will be less affected by the structure, the greater 

the similarity between the signals and the greater the corresponding weight, and vice 

versa. 

 

 

6. Experimental setup 

 

The test piece is shown in the figure below. Its length, width and height are 

3750mm*2000mm*2mm, and it is made of aluminum alloy. The back of the measured 

component is evenly divided into different small areas by a large number of reinforced 

structures. The central position of each small area is arranged with a PZT sensor. The 

sensor spacing in the vertical and horizontal directions is 500mm and 240mm, 

respectively. Although the overall structure is similar, each area contains different types 

and amounts of reinforcement structures such as rivets. In this paper, one of the regions 

is selected as the source domain and three different target domains A, B and C. As 

shown in Figure 6 (c), the size of each small area is 500mm*240mm. In order to obtain 

an ideal detection effect, each small area is evenly divided into 16 parts. 

 

 
 

Figure 2 Schematic diagram of the structure under test 

 

 

7. Accuracy and transferability 

 

This paper uses the data collected in source domain to train a model. Since the 

structure of each target domain is similar to that of the source domain, the source domain 



 

data set and the target domain data set have similar initial features. By fine-tuning the 

trained model, the repeated process of initial feature extraction and model training can 

be avoided to achieve the purpose of migration. This can not only reduce the cost of 

model training, but also improve the accuracy of prediction. As shown in Figure 6 (a-

c), is the accuracy rate of the model before and after migration when different amounts 

of data are used. 

 

 
(a)                                                  (b)                                                 (c) 

 

Figure 3 The training accuracy curves of the three target models: (a) target model A (b) target 

model B (c) target model C 

 

It can be seen from the figure: 

(1) Increasing the amount of data used to train the model is an effective way to 

improve the accuracy of the model. Both before and after transfer learning, the accuracy 

of the model is improved with the increase of data volume. 

(2) After transfer learning, the target model can obtain part of the feature knowledge 

from the source model, which can reduce the time and data amount required for training 

the model. 

(3) Compared with the model before transfer learning, the model after transfer 

learning can converge in a shorter time. 

(4) The initial verification accuracy of the model after transfer learning is better than 

that of the model without transfer learning. 

 

 

8. Impact location result 

 

In order to evaluate the location effect of the weighted centroid algorithm more 

accurately, some test points are selected at equal intervals on the aircraft structure. As 

shown in Figure 4, the distribution of these points on various reinforcement structures, 

such as rivets and reinforcement structures, includes all possible impact scenarios. 

 

 
 

Figure 4 Distribution of test points in structure 



 

 

In this paper, the relative error defined by Equation (2) is used to evaluate the 

positioning effect. 
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Where, xactual and yactual represent the horizontal and vertical coordinates of the real 

impact point respectively, while xpredict and ypredict represent the horizontal and vertical 

coordinates of the predicted impact point respectively. disx and disy represent the 

horizontal and vertical spacing between sensors, respectively. Table I shows the 

positioning effects of the 12 impact points mentioned above. 

 
Table I. Impact location effect 

Number Actual Predict Errorx Errory Number Actual Predict Errorx Errory 

1 (2,2) (3.5,3.3) 3.0 5.4 7 (14,6) (16.3,4.8) 4.6 5.0 

2 (8,2) (10.1,3.3) 4.2 5.4 8 (20,6) (22.7,4.4) 5.4 6.7 

3 (14,2) (17.8,3.2) 7.6 5.0 9 (2,10) (2.9,11.8) 1.8 7.5 

4 (20,2) (16.8,4.6) 6.4 4.6 10 (8,10) (6.7,11.8) 2.6 7.5 

5 (2,6) (4.6,4.5) 5.2 6.3 11 (14,10) (16.1,11.5) 4.2 6.3 

6 (8,6) (10.2,7.4) 4.4 5.8 12 (20,10) (22.8,11.8) 5.6 7.5 

Average \ \ \ \ \ \ \ 4.6 6.1 

 

 

9. Conclusion 

 

The main work of this paper is as follows: 

(1) The sparse sensor array can reduce the extra weight load brought by the 

monitoring equipment to the aircraft 

(2) CNN can be used to complete accurate regional positioning. Based on this 

regional positioning, centroid algorithm can be used to complete the prediction of 

impact location. 

(3) The transfer learning idea of model fine-tuning is adopted, which can reduce the 

unnecessary process of initial feature extraction and model training, and reduce the cost 

of data acquisition and model training. 
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