Impact Monitoring of Large and Complex
Structures Based on Transfer Learning

BOWEN ZHAO, YILIANG ZHANG, XIANPING ZENG
and XINLIN QING



ABSTRACT

Aircraft structure impact monitoring is important to the safe operation of aircraft.
However, aircraft structures are often structurally complex, increasing the uncertainty
of the signal during transmission. Traditional impact monitoring methods need to obtain
sufficient structural change signals through dense sensor arrays to obtain good
monitoring results. But too many sensors can increase the cost of operating an aircraft.
Therefore, this paper adopts sparse sensor array arrangement, proposes a two-step
impact monitoring strategy from region to point location, and adopts deep learning and
traditional methods to monitor impact events. Firstly, the test structure is divided into
several regions of a certain size, and a model capable of accurate regional location is
trained by convolutional neural network. In this process, in view of the large size of the
aircraft structure and the difficulty in obtaining training data, the transfer learning
strategy of model fine-tuning is adopted to transfer the trained feature knowledge of the
source domain model to the target domain model, reducing the cost required for data
acquisition and training model. Then in the second step, on the basis of accurate regional
positioning, weighted centroid method is used to estimate the impact location.

1. Introduction

Impact is a common accident form in the process of aircraft service, which will
damage the integrity of aircraft structure and threaten the safe operation of aircraft.
Therefore, it is necessary to monitor the impact event. At present, the daily inspection
of aircraft mainly relies on manual visual inspection, but for such a large structure as
aircraft, this is a costly work, which takes a lot of labor and time [1]. Therefore,
automatic monitoring and reporting the impact location can greatly improve the
efficiency of the work. To solve these problems, the structural health monitoring
technology (SHM) can be used to achieve continuous monitoring of aircraft impacts
through a large intelligent sensor network system permanently integrated inside or on
the surface of the aircraft structure, combined with advanced and efficient intelligent
monitoring algorithms [2-4].

There are two main approaches to impact monitoring: the model-based approach
and the neural network approach. The model - based method is mainly to build a model
of the mathematical relationship between "stress wave velocity - arrival time — sensor
spacing”. However, it is difficult to establish an accurate mathematical model because
the structure is usually complicated and the material parameters are difficult to obtain
in the actual application process. The method based on neural network usually depends
on the input and output to adjust the connection weight and connection mode of each
internal neuron. The advantage is that the process of model establishment is relatively
simple, while the disadvantage is that a large amount of training data is required for
training, and the training of the model usually takes a long time. On the other hand, the
aircraft structure may be damaged in the process of data collection, it is not suitable for
large-scale data collection. Therefore, data source has become one of the main obstacles
limiting the application of neural network method in structural health monitoring.
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In order to reduce the operational costs brought by the data acquisition system to the
aircraft load, and the practical problems that training data samples are not easy to obtain.
In this paper, sparse sensor array is adopted and the impact monitoring strategy is
adopted from region to point. Firstly, according to the requirements, the structure to be
tested is divided into a number of small regions that need to be accurately located and
used as the source domain to collect data. The powerful classification function of
convolutional neural network is used to convert the regional positioning into a
classification problem. Then, based on the precise region positioning, weighted centroid
algorithm is used to predict the impact location. Finally, to solve the problem of
insufficient data sources of the training model, the transfer learning method of model
fine-tuning is adopted to transfer the trained knowledge of the source domain model to
the target domain model, it can reduce the data samples and training time required by
the training target domain model to reduce the training cost [5-7].

2. Impact monitoring principle

There are many kinds of sensors that can be used to monitor impact, but
piezoelectric sensors become one of the most common sensors in passive structure
health monitoring due to their low cost and convenient layout. When an impact occurs,
the piezoelectric can use the inverse piezoelectric effect to convert stress waves into
electrical signals that are easier to monitor. A typical passive impact monitoring system
mainly consists of three parts: monitored structure, data acquisition system, impact
positioning and evaluation system.

3. Convolutional Neural Network

Convolutional neural network (CNN) is a feedforward network mainly composed
of convolutional layer, pooling layer and fully connected layer. It is good at
classification tasks. The structure of convolutional neural network is briefly introduced
below [8, 9].

(1) Convolutional layer

The convolutional operation layer is the core of the whole convolutional neural
network, which can extract the features of the input data and realize the characteristics
of local connection and weight sharing of the neural network. Compared with the
traditional fully connected neural network, the number of parameters of the
convolutional neural network is greatly reduced.

(2) Pooling layer

The function of pooling layer is to compress and reduce the dimension of data,
which can not only reduce the number of parameters required in the training model
process, but also reduce the overfitting phenomenon in the training process.

(3) Activation Function

In this paper, the most commonly used Relu function in convolutional neural
networks is selected as the activation function. The main function of Rel activation
function is to perform threshold operation on each input value. For input values greater
than or equal to 0, linear function padding is used. Relu function can greatly accelerate
the convergence rate of stochastic gradient descent by virtue of its linear unsaturated

property.



(4) Fully connected layer
In order to complete the final classification task, softmax function is selected to
present the classification result in the form of probability.

4. Transfer learning

To obtain a neural network model with good performance, three factors are usually
required: (1) large quantity and excellent quality data set, (2) a reasonably designed
network model architecture, and (3) sufficient training time. However, in the real
background of structural health monitoring, the data is not easy to obtain and the process
of data acquisition is usually time-consuming and laborious, which greatly limits the
practical application of neural network in impact monitoring. Therefore, in order to
solve the problem of high data source and training cost, and expand the application
ability of neural network, transfer learning has become one of the research directions of
machine learning [10-12].

Because different layers of convolutional neural networks will extract different
features, the shallow convolutional network layer usually extracts some general features
such as contour and color, while the deep convolutional network layer can extract
specific damage features. This paper adopts the transfer learning method of model fine-
tuning. Firstly, a model with good performance is obtained by training source domain
data. Then the shallow convolutional network layer is frozen and fixed, and the deep
convolutional layer is retrained. By feeding the trained features of the source domain
model into the target domain model, a new model can not be trained from scratch, thus
saving a lot of computing resources and computing time.

5. Weighted centroid algorithm

In order to assess whether the impact has caused damage to the structure, it is
necessary to predict the location of the impact. Due to the sparse sensor array adopted
in this paper, there are only a few or even no sensors in some positioning areas, which
restricts some traditional methods based on "arrival time - wave velocity". Therefore,
the weighted centroid algorithm is adopted in this paper to make more accurate point
positioning prediction for the location of impact [13]. The schematic diagram of
weighted centroid algorithm is shown in Figure 1.
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Figure 1. Schematic diagram of weighted centroid location method



The weighted centroid location algorithm is shown in Equation (1). When a new
impact event occurs, the similarity between the new impact signal collected by the
sensor and the standard point signal obtained in the data acquisition process is calculated
as the weight of the weighted centroid algorithm.
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Where, xi and yi are the coordinates of each standard point, and wi is the weight
assigned to each standard point. When the distance between the new impact point and
the standard point is closer, the signal will be less affected by the structure, the greater

the similarity between the signals and the greater the corresponding weight, and vice
versa.
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6. Experimental setup

The test piece is shown in the figure below. Its length, width and height are
3750mm*2000mm*2mm, and it is made of aluminum alloy. The back of the measured
component is evenly divided into different small areas by a large number of reinforced
structures. The central position of each small area is arranged with a PZT sensor. The
sensor spacing in the vertical and horizontal directions is 500mm and 240mm,
respectively. Although the overall structure is similar, each area contains different types
and amounts of reinforcement structures such as rivets. In this paper, one of the regions
is selected as the source domain and three different target domains A, B and C. As
shown in Figure 6 (c), the size of each small area is 500mm*240mm. In order to obtain
an ideal detection effect, each small area is evenly divided into 16 parts.

Figure 2 Schematic diagram of the structure under test

7. Accuracy and transferability

This paper uses the data collected in source domain to train a model. Since the
structure of each target domain is similar to that of the source domain, the source domain



data set and the target domain data set have similar initial features. By fine-tuning the
trained model, the repeated process of initial feature extraction and model training can
be avoided to achieve the purpose of migration. This can not only reduce the cost of
model training, but also improve the accuracy of prediction. As shown in Figure 6 (a-
c), is the accuracy rate of the model before and after migration when different amounts
of data are used.
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Figure 3 The training accuracy curves of the three target models: (a) target model A (b) target
model B (c) target model C

It can be seen from the figure:

(1) Increasing the amount of data used to train the model is an effective way to
improve the accuracy of the model. Both before and after transfer learning, the accuracy
of the model is improved with the increase of data volume.

(2) After transfer learning, the target model can obtain part of the feature knowledge
from the source model, which can reduce the time and data amount required for training
the model.

(3) Compared with the model before transfer learning, the model after transfer
learning can converge in a shorter time.

(4) The initial verification accuracy of the model after transfer learning is better than
that of the model without transfer learning.

8. Impact location result

In order to evaluate the location effect of the weighted centroid algorithm more
accurately, some test points are selected at equal intervals on the aircraft structure. As
shown in Figure 4, the distribution of these points on various reinforcement structures,
such as rivets and reinforcement structures, includes all possible impact scenarios.
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Figure 4 Distribution of test points in structure



In this paper, the relative error defined by Equation (2) is used to evaluate the
positioning effect.
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Where, Xacual and Yactual represent the horizontal and vertical coordinates of the real
impact point respectively, while Xpredict and Ypredict represent the horizontal and vertical
coordinates of the predicted impact point respectively. disx and disy represent the
horizontal and vertical spacing between sensors, respectively. Table I shows the
positioning effects of the 12 impact points mentioned above.

Table I. Impact location effect

Number Actual  Predict  Errory  Errory, Number Actual Predict Error,  Errory
1 (22 (3533) 3.0 54 7 (14,6) (16.3,4.8) 4.6 5.0
2 (8,2 (10133) 42 54 8 (20,6) (22.7,4.9) 54 6.7
3 (142) (17832) 76 5.0 9 (2,10) (2.9,11.8) 1.8 7.5
4 (20,2) (16.84.6) 64 4.6 10 (8,10) (6.7,11.8) 2.6 7.5
5 (2,6) (4645) 5.2 6.3 11 (14,10) (16.1,115) 4.2 6.3
6 (8,6) (102,74) 44 5.8 12 (20,20) (22.8,11.8) 5.6 75

Average \ \ \ \ \ \ \ 4.6 6.1

9. Conclusion

The main work of this paper is as follows:

(1) The sparse sensor array can reduce the extra weight load brought by the
monitoring equipment to the aircraft

(2) CNN can be used to complete accurate regional positioning. Based on this
regional positioning, centroid algorithm can be used to complete the prediction of
impact location.

(3) The transfer learning idea of model fine-tuning is adopted, which can reduce the
unnecessary process of initial feature extraction and model training, and reduce the cost
of data acquisition and model training.
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