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ABSTRACT 

 
To ensure a resource-efficient and resilient operation of engineered systems, it is im- 

perative to understand their performance as-is; a task which can be effectuated through 
Structural Health Monitoring (SHM). When considering higher levels of the SHM hier- 
archy, purely data-driven methods are found to be lacking. For higher-level SHM tasks, 
such as prognosis, or for furnishing a digital twin of a monitored structure, it is necessary 
to integrate the knowledge stemming from physics-based representations, relying on the 
underlying dynamics and mechanics principles. This paper discusses implementation of 
such a physics-enhanced approach to SHM. 

 

INTRODUCTION 
 

The rise in computing power and data availability has favoured the assimilation of 
Machine Learning (ML) and Deep Learning (DL) techniques within engineering ap- 
plications [1, 2]. While this surge tends to motivate purely data-driven applications, 
such methods suffer shortcomings when challenged with tasks that require generalisa- 
tion and/or extrapolation potential. This is often the case within the context of Structural 
Heath Monitoring, where further to the task of diagnosis, it is essential to execute tasks 
related to prognosis. Traditionally, prognostic tasks have relied on white-box engineer- 
ing models, often configured a priori, for forecasting structural performance or inferring 
response in locations where measurements are not available; the latter is known as the 
virtual sensing task [3]. To exploit data availability, the so-called hybrid - or grey-box 
- approach to modelling has emerged, where data is fused with physics-based engineer- 
ing models, in order to refine predictive potential. While hybrid models need not rely 
on ML/DL tools, recent years have seen the surge of physics-enhanced ML (PEML) 
schemes into the SHM domain. 
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Perhaps one of the most typical examples of a hybrid approach to monitoring of
dynamical systems is delivered in Bayesian filter estimators, which couple a system
model (typically in state-space form, but often inferred from numerical (e.g. finite el-
ement models), with sparse and noisy monitoring data. Such Bayesian filters can be
used for estimation tasks of different complexity, including pure response (state) esti-
mation, joint or dual state-parameter estimation, input-state estimation, and even joint
state-parameter-input identification [4]. Bayesian filters draw their potency from their
capacity to deal with uncertainties stemming from modelling errors, disturbances, lack-
ing information on the model and its loads (inputs), and noise corruption. However, they
are limited by the requirement for a model structure, which should be representative of
the system’s dynamics.

In relaxing such an assumption, it would be important to deliver system representa-
tions that can more flexibly account for our lack of knowledge of the underlying physics.
PEML methods fulfil this goal by leveraging known physics to enhance black-box ML-
based predictors, improving their generalisability, learning efficiency, and interpretabil-
ity [5]. Inspired by the categorisation put forth in the recent work of Faroughi et al. [5],
this paper presents three styles of physics-embedding methods across different areas of
the spectrum illustrated in Figure 1; physics-guided methods, physics-informed meth-
ods, and physics-encoded learners.

• Physics-guided methods assume exhaustive physical models, enforcing stricter
constraints on the embedded physics. The amount of data required depends on the
strictness of the imposed physics, albeit data-sparsity concerns are often raised. It
is noted that only partial knowledge of the physics can be prescribed, with residual
(or model mismatch) terms taken on by learners.

• Physics-informed methods strike a balance between purely data-driven and physics-
guided approaches. In these methods, the physics is embedded in a less con-
strained manner, i.e. it is weakly imposed, typically by minimising a loss function,
which vanishes when the imposed physics is satisfied.

• Finally, physics-encoded learners directly embed physics within the learner’s ar-
chitecture using operators, kernels, or transforms. This results in less restricted
modelling (e.g. they may simply impose derivatives), but they are constrained by
the requirement to adhere to this construct.

In the next sections, we offer an overview of adoption of these three different classes
of PEML schemes within the SHM domain.

THE WHITE BOX CASE - BAYESIAN FILTERING

Prior to overviewing the mentioned PEML classes and their adoption within the SHM
and twinning context, we briefly recall the white-box case of Bayesian Filtering (BF),
featured on the upper left corner of the domain depicted in Figure 1. The equation of
motion of a linear time invariant dynamic system can be formulated as [6]:

Mz̈(t) +Dż(t) +Kz(t) = Siu(t) (1)



Figure 1. Clustering of physics-enhanced ML techniques for monitoring and dynamics.

where z(t) ∈ Rndof is the vector of displacements, often linked to the Degrees of
Freedom (DOFs) of a numerical system model, M ∈ Rndof×ndof , D ∈ Rndof×ndof and
K ∈ Rndof×ndof denote the mass, damping and stiffness matrices respectively; u(t) ∈
Rni (with ni representing the number of loads) is the input vector and Si ∈ Rndof×ni is a
Boolean input shape matrix for load assignment. As an optional step, a Reduced Order
Model (ROM) can be adopted, often derived via superposition of modal contributions
z(t) ≈ Ψp(t), where Ψ ∈ Rndof×nr is the reduction basis and p ∈ Rnr is the vec-
tor of the generalised coordinates of the system, with nr denoting the reduced system
dimension. This allows to rewrite Equation 1 as:

Mrp̈(t) +Drṗ(t) +Krp(t) = Sru(t) (2)

where the mass, damping, stiffness and input shape matrices of the reduced system are
obtained as Mr = ΨTMΨ, Dr = ΨTDΨ, Kr = ΨTKΨ and Sr = ΨTSi. The system
can be eventually brought into a combined deterministic-stochastic state-space model,
which forms the basis of application of Bayesian filtering schemes [3]:{

xk = Adxk−1 +Bduk−1 +wk−1

yk = Cxk +Guk + vk.
(3)

where the state vector xk =
[
pk

T ṗT
k

]T ∈ R2nr reflects a random variable follow-
ing a Gaussian distribution with mean x̂k ∈ R2nr and covariance matrix Pk ∈ R2nr×2nr .
Stationary zero-mean uncorrelated white noise sources wk and vk of respective covari-
ance Qk : wk ∼ N (0,Qk) and Rk : vk ∼ N (0,Rk) are introduced to account for
model uncertainties and measurement noise. Bayesian filters exploit this hybrid formu-
lation to extract an improved posterior estimate of the complete response of the system
xk, i.e. even in unmeasured DOFs, on the basis of a “predict” and “update” procedure.
Variants of these filters are formed to operate on linear (Kalman Filter - KF) or nonlinear
systems (Extended KF - EKF, Unscented KF - UKF, Particle Filter - PF, etc) for diverse
estimation tasks. Moreover, depending on the level of reduction achieved, BF estimators
can feasibly operate in real, or near real-time. It becomes, however, obvious that these
estimators are constrained by the imposed model form.



THE BLACK BOX CASE - DEEP LEARNING MODELS

At the other end of such a white-box (model-based) approach, where the system
dynamics is transparent and therefore largely prescribed, lies a black-box approach, em-
ploying DL schemes to achieve stochastic representations of monitored systems. Linking
to the BF structured described previously, Variational Autoencoders (VAE) have been
extended with a temporal transition process on the latent space dynamics in order to in-
fer dynamic models from sequential observation data [7]. This approach offers greater
flexibility than a strict model-based approach, since VAEs are more apt to learning non-
linear dynamics. The obvious shortcoming is that, typically, the inferred latent space
need not be linked to coordinates of physical connotation. This renders such schemes
more suitable for inferring dynamical features, and even condition these on operational
variables [8], but largely unsuitable for reproducing system response in a virtual sensing
context. Following such a scheme, Stochastic Recurrent Networks (STORN) [7] and
Deep Markov Models (DMMs) [9], which are further referred to as Dynamic Variational
Autoencoders (DVAEs), have been applied for inferring dynamics in a black box context
with promising results in speech analysis, music synthesis, edical diagnosis and dynam-
ics [10]. In structural dynamics, in particular, previous work of the authoring team [11]
argues that use of the AutoeEncoder (AE) essentially leads in capturing a system’s Non-
linear Normal Modes (NNMs), with a better approximation achieved when a VAE is
employed [12]. It is reminded that, while potent in delivering compressed representa-
tions, these DL methods do not learn interpretable latent spaces.

PHYSICS - ENHANCED ML MODELS

PEML can be leveraged to relax the constraints encountered in a white-box approach,
while seeding more physics intuition than the black-box counterpart. We here adopt the
term physics-enhanced as an umbrella term encompassing the three main aforemen-
tioned categories, which we overview in what follows.

Physics - Guided ML Models

In physics-guided Neural Network (PgNN) schemes DL techniques are used to esti-
mate a surrogate mapping between the input (e.g. loads) and target output (e.g. response)
datasets, while adhering to prescribed physics, which implies a usually predefined model
form. Frequently, this results in the Neural Network (NN) acting as a residual, or trans-
fer function, modeller, determining an estimate of the mapping between the prescribed
model and the data. As aforementioned for the case of BFs, when the model is assumed
known a priori, the estimation accuracy will suffer in the case of model mismatch. Re-
vach, et al. [13] tackle this challenge by employing a PEML scheme where a NN is
embedded within a KF, where partially known process and measurement equations are
prescribed, in order to learn the Kalman Gain from data, and feed this in the overall
KF flow. Angeli, et al. [14] follow an alternate approach, where a DL framework is
trained on data from a generic and computationally intensive multibody model. The
reduced model is then fed into an EKF for joint input-state estimation. Similarly, Ver-
hoek et al. [15] additively augment a known approximative state-space (SS) model of a
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Figure 2. The Physics-guided Deep Markov Model (PgDMM); figure adapted from [16]

nonlinear system with a Sub-Space Encoder Network, which takes on model mismatch.
Retaining the additive logic and coupling this to the DMM, our prior work [16] proposed
a probabilistic Physics-guided Deep Markov Model (PgDMM) for identifying dynamic
system models with a physical connotation from measurement data. The framework,
which is illustrated in Figure 2, combines physics-based state-space models with Deep
Markov Models, resulting in a hybrid modelling approach. The physics-based models
need not fully reflect the state dynamics (e.g. linearised models can be adopted). How-
ever, the inductive bias of the partially known physics yields a structured nature of the
transition and emission functions in the PgDMM, which leads to a more physically in-
terpretable latent space. This is shown to generalise the predictive capabilities of deep
learning-based models on both simulated and experimental use cases.

Physics - Informed ML Models

Physics Informed Neural networks (PINNs) have become a primary instance of physics-
informed ML-based models. PINNs typically prescribe the model in terms of deriva-
tives in the loss function [17] by exploiting automatic differentiation. The PINN offers
a flexible formulation, which can shift weight between physics and data requirements
by appropriate assignment of hyperparameters. On the physics side, the objective is
often to satisfy prescribed model equations (e.g. governing differential equation). Dic-
tionary methods follow a similar logic [18], attempting to discover a model definition
on the basis of a predefined dictionary of possible model solutions. As these methods
often impose soft conditions, mismatch between the model and available data is toler-
ated, rendering these schemes suitable for handling noisy observations. PINNs offer the
advantage of incorporating multiple elements within their loss function, including em-
bedment of boundary conditions, complex geometries, and governing equations. PINNs
have been demonstrated for simultaneous input-state-parameter estimation tasks in the
works of Yuan, et al. [19] and Moradi, et al. [20], on the problem of a monitored vibrat-
ing beam. Further works, explore use of PINNS for parameter identification of nonlinear
dynamic systems [21] and damage detection [22].



Physics - Encoded ML Models

Physics-encoded schemes embed the physical constraints directly within the estimat-
ing operator [23]. An advantage of physics encoded schemes, such as Physics-enhanced
NNs (PeNNs), is their extension from instance learning (a frequently commented flaw
of PINNs), to more generalised models. An example of physics-encoded learners is
found in Gaussian processes (GPs). There are two main approaches to embed physical
knowledge into GPs, namely i) an appropriate selection of the mean function [24] and
ii) via kernel design, where each kernel embeds a different belief as to which family of
functions describes the model solution [25, 26]. Such an encoding is further feasible in
DL architectures, as yielded in Neural Ordinary Differential Equations (NODEs) [27].
NODEs offer a flexible and expressive modelling framework capturing intricate tem-
poral dependencies and nonlinear dynamics. They inherently accommodate irregularly
sampled or sparse data as the ODE solver can handle time interpolation. Moreover,
they can leverage established physical laws or prior knowledge by integrating these into
the ODE function, thereby augmenting model interpretability and generalisation. In
prior work, we enhance standard NODEs by incorporating physical knowledge into the
model architecture, to improve structural identification of monitored systems [28]. This
so-called physics-informed NODE reflects a versatile framework for discrepancy mod-
elling, with transparentisation of the trained neural network further achieved by coupled
implementation of a sparse identification scheme operated on the derived NN. An alter-
native approach to physics encoding is imposition of constraints according to the Hamil-
tonian formalism. Greydanus et al. [29] enforce a symmetric gradient on a NN trained
to predict the dynamics of a conservative system. Saedmunsson et al. [30] coupled this
scheme with the NODE, yielding the so-called Symplectic NODEs. In recent work [31],
we extend this reasoning to stochastic learning, where a symplectic encoder, employed
within a DMM, learns an energy-preserving latent representation of the system, opening
up new directions for use of PeNNs for monitoring of dynamical systems.

DISCUSSION AND CONCLUDING REMARKS

We overview and propose different classes of PEML schemes for achieving tasks
of different intricacy within the context of monitoring and twinning. The flexibility of
the ML-based learners allows to more flexibly account for model mismatch or to even
discover the system’s solution and underlying equations, while admitting data of various
formats (e.g. images, or video frames) and noise contamination levels. More impor-
tantly, the physics bias ensures recovery of latent spaces that have a physical connotation
and are, therefore, interpretable [16]. We argue that in all cases physics can be leveraged
to serve as an invaluable inductive bias to facilitates the task at hand.
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